Tìm \(m\) để phương trình \({\sin ^4}x + {\cos ^4}x + {\cos ^2}4x = m\) có 4 nghiệm phân biệt thuộc
Tìm \(m\) để phương trình \({\sin ^4}x + {\cos ^4}x + {\cos ^2}4x = m\) có 4 nghiệm phân biệt thuộc đoạn \(\left[ { - \frac{\pi }{4};\frac{\pi }{4}} \right]\).
Đáp án đúng là: C
Quảng cáo
- Sử dụng biến đổi: \({\cos ^4}x + {\cos ^2}4x = {\left( {{{\sin }^2}x + {{\cos }^2}x} \right)^2} - 2{\sin ^2}x{\cos ^2}x\).
- Sử dụng công thức nhân đôi \(\sin x\cos x = \frac{1}{2}\sin 2x\) và công thức hạ bậc \({\sin ^2}2x = \frac{{1 - \cos 4x}}{2}\).
- Đưa phương trình về dạng phương trình bậc hai với một hàm số lượng giác .
- Đặt ẩn phụ \(t = \cos 4x\), tìm khoảng giá trị của \(t\). Đưa phương trình về dạng \(f\left( t \right) = m\).
- Tìm điều kiện để phương trình ban đầu có 4 nghiệm phân biệt. Lập BBT hàm số \(f\left( t \right)\) và kết luận.
Đáp án cần chọn là: C
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












