Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Gọi \(\left( P \right)\) là mặt phẳng chứa điểm \(B\left( {0;1;2} \right)\) sao cho khoảng cách từ

Câu hỏi số 457599:
Vận dụng

Gọi \(\left( P \right)\) là mặt phẳng chứa điểm \(B\left( {0;1;2} \right)\) sao cho khoảng cách từ điểm \(A\left( {1;2;1} \right)\) đến\(\left( P \right)\)là lớn nhất. Phương trình của \(\left( P \right)\) là:

Đáp án đúng là: B

Quảng cáo

Câu hỏi:457599
Phương pháp giải

- Gọi \(H\) là hình chiếu vuông góc của \(A\) lên \(\left( P \right)\), chứng minh \(AH \le AB\).

- Viết phương trình mặt phẳng \(\left( P \right)\) khi \(A{H_{\max }} = AB\).

- Phương trình mặt phẳng đi qua \(M\left( {{x_0};{y_0};{z_0}} \right)\) và có 1 VTPT \(\overrightarrow n \left( {A;B;C} \right)\) là:

\(A\left( {x - {x_0}} \right) + B\left( {y - {y_0}} \right) + C\left( {z - {z_0}} \right) = 0\).

Giải chi tiết

Gọi \(H\) là hình chiếu vuông góc của \(A\) lên \(\left( P \right)\), khi đó ta có \(AH \le AB\) (quan hệ giữa đường vuông góc và đường xiên).

Do đó \(d{\left( {A;\left( P \right)} \right)_{\max }} \Leftrightarrow A{H_{\max }} \Leftrightarrow H \equiv B\), khi đó \(AB \bot \left( P \right)\).

Khi đó \(\left( P \right)\) nhận \(\overrightarrow {AB}  = \left( {1;1; - 1} \right)\) là 1 vtpt.

Vậy để khoảng cách từ điểm \(A\left( {1;2;1} \right)\) đến\(\left( P \right)\)là lớn nhất thì phương trình của \(\left( P \right)\) là:

\(1\left( {x - 0} \right) + 1\left( {y - 1} \right) - 1\left( {z - 2} \right) = 0\) \( \Leftrightarrow x + y - z + 1 = 0\).

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com