Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Hàm số \(y = 2{x^3} - 3\left( {m + 1} \right){x^2} + 6mx + 1\) nghịch biến trên khoảng \(\left( {1;3}

Câu hỏi số 457598:
Vận dụng

Hàm số \(y = 2{x^3} - 3\left( {m + 1} \right){x^2} + 6mx + 1\) nghịch biến trên khoảng \(\left( {1;3} \right)\) khi và chỉ khi:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:457598
Phương pháp giải

- Tính \(y'\), giải phương trình \(y' = 0\) và tìm nghiệm.

- Chứng minh \({\Delta _{y'}} \ge 0\,\,\forall m\).

- Xét 2 TH:

  + \({\Delta _{y'}} = 0\), suy ra dấu của \(y'\) và kết luận.

  + \({\Delta _{y'}} > 0\), suy ra phương trình có 2 nghiệm phân biệt \({x_1} < {x_2}\). Để hàm số nghịch biến trên \(\left( {1;3} \right)\) thì \(\left( {1;3} \right) \subset \left( {{x_1};{x_2}} \right)\), từ đó tìm \(m\).

Giải chi tiết

TXĐ: \(D = \mathbb{R}\). Ta có \(y' = 6{x^2} - 6\left( {m + 1} \right)x + 6m\).

Xét \(y' = 0 \Leftrightarrow {x^2} - \left( {m + 1} \right)x + m = 0\).

Ta có \(\Delta  = {\left( {m + 1} \right)^2} - 4m = {\left( {m - 1} \right)^2} \ge 0\,\,\forall m\).

+ Với \(m = 1\) ta có \(y' = 6{x^2} - 12x + 6 = 6{\left( {x - 1} \right)^2} \ge 0\,\,\forall x \in \left( {1;3} \right)\), do đó hàm số đồng biến trên \(\left( {1;3} \right)\) (loại).

+ Với \(m \ne 1 \Rightarrow \Delta  > 0\,\,\forall m\), suy ra phương trình \(y' = 0\) có 2 nghiệm phân biệt \(\left[ \begin{array}{l}{x_1} = \frac{{m + 1 + m - 1}}{2} = m\\{x_2} = \frac{{m + 1 - m + 1}}{2} = 1\end{array} \right.\).

Ta có bảng xét dấu:

Dựa vào BXD ta thấy để hàm số nghịch biến trên \(\left( {1;3} \right)\) thì \(y' \le 0\,\,\forall x \in \left( {1;3} \right)\) \( \Rightarrow \left( {1;3} \right) \subset \left( {{x_1};{x_2}} \right)\).

\( \Rightarrow \left[ \begin{array}{l}\left( {1;3} \right) \subset \left( {1;m} \right)\\\left( {1;3} \right) \subset \left( {m;1} \right)\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}1 \le 1 < 3 \le m\\m \le 1 < 3 \le 1\,\,\left( {Loai} \right)\end{array} \right. \Leftrightarrow m \ge 3\,\,\left( {tm} \right)\).

Vậy \(m \ge 3\).

Chọn D.

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com