Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Giải và biện luận phương trình sau theo tham số \(m\): \(\dfrac{{x + 1}}{{x + 2 + m}} = \dfrac{{x - 1}}{{x

Câu hỏi số 458187:
Vận dụng cao

Giải và biện luận phương trình sau theo tham số \(m\):

\(\dfrac{{x + 1}}{{x + 2 + m}} = \dfrac{{x - 1}}{{x + 2 - m}}\)

Quảng cáo

Câu hỏi:458187
Phương pháp giải

- Tìm điều kiện xác định.

- Đưa phương trình đã cho về dạng \(ax + b = 0\) hay \(ax =  - b\).

+ Nếu \(a = 0\): Phương trình \(ax + b = 0\) trở thành \(0x + b = 0\), khi đó:

Trường hơp 1: Với \(b = 0\) thì phương trình \(ax + b = 0\) có nghiệm đúng với mọi \(x \in \mathbb{R}\).

Trường hợp 2: Với \(b \ne 0\) thì phương trình \(ax + b = 0\) vô nghiệm.

+ Nếu \(a \ne 0\): \(ax + b = 0 \Leftrightarrow x =  - \dfrac{b}{a}\). Do đó, phương trình có nghiệm duy nhất \(ax + b = 0 \Leftrightarrow x =  - \dfrac{b}{a}\).

Kết hợp với điều kiện xác định để tìm \(m\).

Giải chi tiết

Giải và biện luận phương trình sau theo tham số \(m\): \(\dfrac{{x + 1}}{{x + 2 + m}} = \dfrac{{x - 1}}{{x + 2 - m}}\)

Điều kiện: \(x \ne  - 2 - m\); \(x \ne  - 2 + m\)

\(\begin{array}{l}\,\,\,\,\,\,\dfrac{{x + 1}}{{x + 2 + m}} = \dfrac{{x - 1}}{{x + 2 - m}}\,\,\,\,\,\,\,\,\\ \Rightarrow \left( {x + 1} \right)\left( {x + 2 - m} \right) = \left( {x - 1} \right)\left( {x + 2 + m} \right)\\ \Leftrightarrow {x^2} + 2x - mx + x + 2 - m = {x^2} + 2x + xm - x - 2 - m\\ \Leftrightarrow \left( {{x^2} - {x^2}} \right) + (2x - 2x) - (mx + mx) + (x + x) = ( - 2 - 2) - m + m\\ \Leftrightarrow  - 2mx + 2x =  - 4\\ \Leftrightarrow  - 2\left( {m - 1} \right)x =  - 4\\ \Leftrightarrow \left( {m - 1} \right)x = 2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\end{array}\)

+) TH1: \(a = 0\)\( \Leftrightarrow \) \(m = 1\) 

Phương trình\(\,\left( 1 \right)\)có dạng \(0x = 2\) (phương trình vô nghiệm).

+) TH2: \(a \ne 0\)\( \Leftrightarrow \) \(m \ne 1\)

Phương trình\(\,\left( 1 \right)\) \( \Leftrightarrow \)\(x = \dfrac{2}{{m - 1}}\).

Kết hợp với điều kiện \(x \ne  - 2 - m\), \(x \ne  - 2 + m\) ta có:

\(\left\{ \begin{array}{l}\dfrac{2}{{m - 1}} \ne  - 2 - m\\\dfrac{2}{{m - 1}} \ne  - 2 + m\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}2 \ne \left( { - 2 - m} \right)\left( {m - 1} \right)\\2 \ne \left( { - 2 + m} \right)\left( {m - 1} \right)\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}2 \ne  - 2m + 2 - {m^2} + m\\2 \ne  - 2m + 2 + {m^2} - m\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l} - {m^2} - m \ne 0\\{m^2} - 3m \ne 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\m \ne  - 1\\m \ne 3\end{array} \right.\)

Kết luận:

Với \(m = 1\), phương trình có tập nghiệm là: \(S = \emptyset \).

Với \(m \ne 0,\,\,m \ne  \pm 1,\,\,m \ne 3\), phương trình có tập nghiệm là:\(S = \left\{ {\dfrac{2}{{m - 1}}} \right\}\).

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 8 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com