Giả sử \({\left( {1 + x + {x^2} + {x^3}} \right)^4} = {a_0} + {a_1}x + {a_2}{x^2} + ... +
Giả sử \({\left( {1 + x + {x^2} + {x^3}} \right)^4} = {a_0} + {a_1}x + {a_2}{x^2} + ... + {a_{12}}{x^{12}}\,\,\left( {{a_i} \in \mathbb{R}} \right)\). Giá trị của tổng \(S = C_4^0{a_4} - C_4^1{a_3} + C_4^2{a_2} - C_4^3{a_1} + C_4^4{a_0}\) bằng:
Đáp án đúng là: B
Quảng cáo
- Phân tích \(1 + x + {x^2} + {x^3}\) thành nhân tử.
- Khai triển nhị thức Niu-tơn: \({\left( {a + b} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{a^{n - k}}{b^k}} \).
- Tìm \({a_0},\,\,{a_1},\,\,{a_2},\,\,{a_3},\,\,{a_4}\) lần lượt là hệ số của các số hạng không chứa x, chứa x, chứa \({x^2},\,\,{x^3},\,\,{x^4}\).
- Thay vào tính \(S\).
Đáp án cần chọn là: B
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












