Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Giải bài toán bằng cách lập phương trình hoặc hệ phương trình Hai công nhân làm chung trong

Câu hỏi số 461402:
Vận dụng

Giải bài toán bằng cách lập phương trình hoặc hệ phương trình

Hai công nhân làm chung trong \(12\) ngày thì hoàn thành công việc đã định. Họ làm chung với nhau \(4\) ngày thì người thứ nhất được điều đi làm việc khác, người thứ hai làm công việc còn lại trong \(10\) ngày. Hỏi người thứ nhất làm một mình thì sau bao lâu thì hoàn thành công việc?

Đáp án đúng là: C

Quảng cáo

Câu hỏi:461402
Phương pháp giải

Giải bài toán bằng cách lập phương trình:

+) Gọi ẩn và đặt điều kiện cho ẩn.

+) Biểu diễn các đại lượng chưa biết theo ẩn vừa gọi và các đại lượng đã biết.

+) Dựa vào dữ kiện bài toán để lập hệ phương trình.

+) Giải hệ phương trình vừa lập sau đó đối chiếu với điều kiện đề bài và kết luận.

Giải chi tiết

Gọi thời gian người thứ nhất làm một mình hoàn thành công việc là \(x\) (ngày); \(\left( {x > 12} \right).\)

Thời gian người thứ hai làm một mình hoàn thành công việc là \(y\) (ngày); \(\left( {y > 12} \right).\)

Trong \(1\) ngày người thứ nhất làm được \(\dfrac{1}{x}\) công việc.

Trong \(1\) ngày người thứ hai làm được \(\dfrac{1}{y}\) công việc.

Hai công nhân làm chung trong \(12\) ngày thì hoàn thành công việc nên trong \(1\) ngày hai công nhân làm được \(\dfrac{1}{{12}}\) công việc.

Khi đó, ta có phương trình : \(\dfrac{1}{x} + \dfrac{1}{y} = \dfrac{1}{{12}}\)          \(\left( 1 \right)\)

Trong \(4\) ngày, cả hai người làm được \(\dfrac{4}{{12}} = \dfrac{1}{3}\) công việc.

Trong \(10\) ngày, người thứ hai làm được \(\dfrac{{10}}{y}\) công việc.

Vì hai công nhân làm chung với nhau \(4\) ngày thì người thứ nhất được điều đi làm việc khác, người thứ hai làm hoàn thành công việc còn lại trong \(10\) ngày nên ta có phương trình :   \(\dfrac{1}{3} + \dfrac{{10}}{y} = 1\)          \(\left( 2 \right)\)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) ta có hệ phương trình :

     \(\left\{ \begin{array}{l}\dfrac{1}{x} + \dfrac{1}{y} = \dfrac{1}{{12}}\\\dfrac{1}{3} + \dfrac{{10}}{y} = 1\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}\dfrac{1}{x} + \dfrac{1}{y} = \dfrac{1}{{12}}\\\dfrac{{10}}{y} = \dfrac{2}{3}\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}\dfrac{1}{x} + \dfrac{1}{y} = \dfrac{1}{{12}}\\y = 15\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}\dfrac{1}{x} = \dfrac{1}{{12}} - \dfrac{1}{{15}}\\y = 15\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}\dfrac{1}{x} = \dfrac{1}{{60}}\\y = 15\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 60\,\,\,\left( {tm} \right)\\y = 15\,\,\,\,\left( {tm} \right)\end{array} \right.\)

Vậy người thứ nhất làm một mình trong \(60\) ngày thì hoàn thành công việc.

Đáp án cần chọn là: C

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com