Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho đường thẳng \(d\) và đường tròn \(\left( {O;\,\,R} \right)\) không có điểm chung. Kẻ \(OH \bot

Câu hỏi số 461407:
Vận dụng

Cho đường thẳng \(d\) và đường tròn \(\left( {O;\,\,R} \right)\) không có điểm chung. Kẻ \(OH \bot d\) tại \(H\). Điểm \(A\) thuộc \(d\) và không trùng với điểm \(H\). Qua \(A\) kẻ hai tiếp tuyến \(AB,\,\,AC\) tới \(\left( O \right)\) (\(B\) và \(C\) là tiếp điểm). \(BC\) cắt \(OA\), \(OH\) lần lượt tại \(M\) và \(N\). Đoạn thẳng \(OA\) cắt \(\left( O \right)\) tại \(I\).

1) Chứng minh bốn điểm \(O,\,\,B,\,\,A,\,\,C\) thuộc cùng một đường tròn.

2) Chứng minh \(OM\,.\,OA = ON\,.\,OH\).

3) Chứng minh \(I\) là tâm đường tròn nội tiếp \(\Delta ABC\).

4) Chứng minh rằng khi điểm \(A\) di động trên đường thẳng \(d\) thì đường thẳng \(BC\) luôn đi qua một điểm cố định.

Quảng cáo

Câu hỏi:461407
Phương pháp giải

a) Chứng minh tứ giác \(OBAC\) nội tiếp đường tròn dựa vào dấu hiệu nhận biết. Từ đó, suy ra cả bốn điểm \(O,\,\,B,\,\,A,\,\,C\) nằm trên cùng một đường tròn.

b) Chứng minh hai tam giác đồng dạng.

c) Chứng minh \(I\) là giao điểm của hai đường phân giác trong \(\Delta ABC\).

d) Biểu diễn \(ON\) theo các đoạn thẳng có độ dài không đổi suy ra \(N\) cố định.

Giải chi tiết

1) Chứng minh bốn điểm \(O,\,\,B,\,\,A,\,\,C\) thuộc cùng một đường tròn.

Xét \(\left( O \right)\) ta có: \(OB \bot AB\) tại \(B\) (vì \(AB\) là tiếp tuyến của \(\left( O \right)\) với \(B\) là tiếp điểm)

\( \Rightarrow \angle OBA = {90^0}\)

\(OC \bot AC\) tại \(C\) (vì \(AC\) là tiếp tuyến của \(\left( O \right)\) với \(C\) là tiếp điểm)

\( \Rightarrow \angle OCA = {90^0}\)

Xét tứ giác \(OABC\) có: \(\left. \begin{array}{l}\angle OBA = {90^0}\\\angle OCA = {90^0}\end{array} \right\}\)\( \Rightarrow \angle OBA + \angle OCA = {180^0}\)

\( \Rightarrow \) Tứ giác \(OABC\) nội tiếp đường tròn (tứ giác có tổng hai góc đối nhau bằng \({180^0}\))

\( \Rightarrow \) Bốn điểm \(O,\,\,B,\,\,A,\,\,C\) thuộc cùng một đường tròn (định nghĩa tứ giác nội tiếp)

2) Chứng minh \(OM\,.\,OA = ON\,.\,OH\).

Xét đường tròn \(\left( O \right)\) có:

\(AB = AC\) (tính chất hai tiếp tuyến cắt nhau)

\(OB = OC\) (\(B\) và \(C\) thuộc \(\left( O \right)\))

\( \Rightarrow OA\) là đường trung trực của \(BC\) (định lí đường trung trực)

\( \Rightarrow OA \bot BC\) tại \(M\)

Xét \(\Delta MON\) và \(\Delta HOA\) ta có:

\(\angle AOH\,\,\,chung\)

\(\angle OMN = \angle OHA\,\,\left( { = {{90}^0}} \right)\)

\( \Rightarrow \Delta MON \sim \Delta HOA\,\,\,\left( {g - g} \right)\)

\( \Rightarrow \dfrac{{OM}}{{OH}} = \dfrac{{ON}}{{OA}}\) (tỷ lệ cặp cạnh tương ứng)

\( \Rightarrow OM.OA = ON.OH\) (đpcm)

3) Chứng minh \(I\) là tâm đường tròn nội tiếp \(\Delta ABC\).

\(AB,\,\,AC\) là tiếp tuyến của đường tròn \(\left( O \right)\)

\( \Rightarrow AO\) là tia phân giác của \(\angle BAC\) (tính chất hai tiếp tuyến cắt nhau) 

\( \Rightarrow AI\) là tia phân giác của \(\angle BAC\) (vì \(I \in OA\))   \(\left( 1 \right)\)

Vì \(OA\) là đường trung trực của \(BC\) mà \(I \in OA\)

\( \Rightarrow \) \(IB = IC\) (định lí đường trung trực)

 (liên hệ giữa cung và dây)

Ta có:

\(\angle ABI = \dfrac{1}{2}\,\,sd\,\,cung\,\,BI\) (góc tạo bởi tiếp tuyến và dây cung)

\(\angle IBC = \dfrac{1}{2}\,sd\,\,cung\,\,CI\) (góc nội tiếp bị chắn bởi cung \(CI\))

Mà  

\( \Rightarrow \angle ABI = \angle IBC\)

\( \Rightarrow BI\) là tia phân giác của \(\angle ABC\)  \(\left( 2 \right)\)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra \(I\) là giao điểm của hai đường phân giác trong của \(\Delta ABC\)

\( \Rightarrow \) \(I\) là tâm đường tròn nội tiếp \(\Delta ABC\) (đpcm).

4) Chứng minh rằng khi điểm \(A\) di động trên đường thẳng \(d\) thì đường thẳng \(BC\) luôn đi qua một điểm cố định.

Xét \(\Delta OAB\) vuông tại \(B\) có \(BM \bot OA\).

\( \Rightarrow O{B^2} = OM.OA\) (hệ thức về cạnh và đường cao)

Theo câu a) ta có: \(OM.OA = ON.OH\)

\( \Rightarrow O{B^2} = ON.OH\)

\( \Rightarrow ON = \dfrac{{O{B^2}}}{{OH}} = \dfrac{{{R^2}}}{{OH}}\)

Vì \(OH\) không đổi nên \(ON\) không đổi \( \Rightarrow \) \(N\) cố định.

\( \Rightarrow \) Khi điểm \(A\) di động trên đường thẳng \(d\) thì đường thẳng \(BC\) luôn đi qua một điểm cố định.

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com