Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Gọi \(D = \left[ {a;\,\,b} \right]\) là tập xác định của hàm số \(y = \sqrt {\left( {2 - \sqrt 5 }

Câu hỏi số 461695:
Thông hiểu

Gọi \(D = \left[ {a;\,\,b} \right]\) là tập xác định của hàm số \(y = \sqrt {\left( {2 - \sqrt 5 } \right){x^2} + \left( {15 - 7\sqrt 5 } \right)x + 25 - 10\sqrt 5 } \). Khi đó \(M = a + {b^2}\) bằng

Đáp án đúng là: D

Quảng cáo

Câu hỏi:461695
Phương pháp giải

Hàm số \(y = \sqrt {f\left( x \right)} \) xác định khi và chỉ khi \(f\left( x \right) \ge 0\). Từ đó, tìm \(a\), \(b\) và tính giá trị của biểu thức \(M = a + {b^2}\)

Giải chi tiết

Hàm số \(y = \sqrt {\left( {2 - \sqrt 5 } \right){x^2} + \left( {15 - 7\sqrt 5 } \right)x + 25 - 10\sqrt 5 } \) xác định khi và chỉ khi

\(\begin{array}{l}\left( {2 - \sqrt 5 } \right){x^2} + \left( {15 - 7\sqrt 5 } \right)x + 25 - 10\sqrt 5  \ge 0\\ \Leftrightarrow {x^2} + \left( {5 - \sqrt 5 } \right)x - 5\sqrt 5  \le 0\\ \Leftrightarrow \left( {x + 5} \right)\left( {x - \sqrt 5 } \right) \le 0\\ \Leftrightarrow  - 5 \le x \le \sqrt 5 \end{array}\)

\( \Rightarrow \) Tập xác định của hàm số \(y = \sqrt {\left( {2 - \sqrt 5 } \right){x^2} + \left( {15 - 7\sqrt 5 } \right)x + 25 - 10\sqrt 5 } \) là \(D = \left[ { - 5;\,\,\sqrt 5 } \right]\).

\( \Rightarrow a =  - 5;\,\,b = \sqrt 5 \)

\( \Rightarrow M = a + {b^2} = \)\(\left( { - 5} \right) + {\left( {\sqrt 5 } \right)^2} = 0\)

Đáp án cần chọn là: D

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com