Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Số nghiệm nguyên của bất phương trình \(\dfrac{{{x^4} - {x^2}}}{{{x^2} + 5x + 6}} \le

Câu hỏi số 461910:
Thông hiểu

Số nghiệm nguyên của bất phương trình \(\dfrac{{{x^4} - {x^2}}}{{{x^2} + 5x + 6}} \le 0\)?

Đáp án đúng là: B

Quảng cáo

Câu hỏi:461910
Phương pháp giải

Giải bất phương trình để tìm tập nghiệm và tìm các giá trị nguyên nằm trong tập nghiệm đó.

Giải chi tiết

ĐKXĐ: \({x^2} + 5x + 6 \ne 0 \Leftrightarrow \left\{ \begin{array}{l}x \ne  - 2\\x \ne  - 3\end{array} \right.\)

\(\dfrac{{{x^4} - {x^2}}}{{{x^2} + 5x + 6}} \le 0 \Leftrightarrow \dfrac{{{x^2}\left( {{x^2} - 1} \right)}}{{{x^2} + 5x + 6}} \le 0\)

Ta có bảng xét dấu:

\( \Rightarrow x \in \left( { - 3;\,\, - 2} \right) \cup \left[ { - 1;\,\,1} \right]\)

Mà \(x \in \mathbb{Z}\) nên \(x \in \left\{ { - 1;\,\,0;\,\,1} \right\}\).

Vậy phương trình có \(3\) nghiệm nguyên.

Đáp án cần chọn là: B

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com