Bất phương trình \({\log _2}\left( {{x^2} - x - 2} \right) \ge {\log _{0,5}}\left( {x - 1} \right) + 1\) có bao
Bất phương trình \({\log _2}\left( {{x^2} - x - 2} \right) \ge {\log _{0,5}}\left( {x - 1} \right) + 1\) có bao nhiêu nghiệm nguyên thuộc \(\left[ {0;2021} \right]\)?
Đáp án đúng là: D
Quảng cáo
- Đưa về cùng cơ số.
- Sử dụng công thức \({\log _a}f\left( x \right) + {\log _a}g\left( x \right) = {\log _a}\left[ {f\left( x \right)g\left( x \right)} \right]\,\,\left( {0 < a \ne 1,\,\,f\left( x \right),\,g\left( x \right) > 0} \right)\).
- Giải bất phương trình logarit: \({\log _a}f\left( x \right) \ge b \Leftrightarrow f\left( x \right) \ge {a^b}\,\,\left( {a > 1} \right)\).
Đáp án cần chọn là: D
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












