Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho đường tròn \(\left( O \right)\) có bán kính \(R = 2a\) và điểm A nằm ngoài đường tròn \(\left(

Câu hỏi số 470688:
Vận dụng

Cho đường tròn \(\left( O \right)\) có bán kính \(R = 2a\) và điểm A nằm ngoài đường tròn \(\left( O \right)\). Kẻ đến \(\left( O \right)\) hai tiếp tuyến AM  và AN (với M, N là các tiếp điểm)

1) Chứng minh bốn diểm A, M, N, O cùng thuộc một đường tròn \(\left( C \right)\). Xác định tâm và bán kính của đường tròn \(\left( C \right)\).

2) Tính diện tích S của tứ giác AMON theo a, biết rằng \(OA = 3a\).

3) Gọi M’ là điểm đối xứng với M qua OP là giao điểm của đường thẳng AO và\(\left( O \right)\), P nằm bên ngoài đoạn OA. Tính \(\sin \angle MPN.\)

Quảng cáo

Câu hỏi:470688
Giải chi tiết

1) Chứng minh bốn điểm A, M, N, O cùng thuộc một đường tròn \(\left( C \right)\). Xác định tâm và bán kính của đường tròn \(\left( C \right)\).

Gọi I là trung điểm của OA.

Ta có: \(\angle OMA = {90^0}\) (AM là tiếp tuyến với \(\left( O \right)\))

\( \Rightarrow \Delta AMO\) vuông tại M

Có MI là trung tuyến \( \Rightarrow MI = IO = IA\) (1)

\(\angle ONA = {90^0}\) (AN là tiếp tuyến của \(\left( O \right)\))

\( \Rightarrow \Delta ANO\) vuông tại N

Có NI là trung tuyến \( \Rightarrow NI = IO = IA\) (2)

Từ (1) và (2) suy ra \(IO = IA = IM = IM\) nên 4 điểm A, M, N, O cùng thuộc đường tròn \(\left( C \right)\) tâm I bán kính \(R = \dfrac{{OA}}{2}\). (đpcm)

2) Tính diện tích S của tứ giác AMON theo \(a\), biết rằng \(OA = 3a\).

Gọi E là giao điểm của MN là OA.

Ta có: \(OM = ON = R\)  và \(AM = AN\) (tính chất hai tiếp tuyến cắt nhau)

\( \Rightarrow OA\) là đường trung trực của đoạn MN

\( \Rightarrow OA \bot MN\) tại trung điểm E của MN.

Tam giác OMA vuông tại M, theo Pitago ta có:

\(A{M^2} = O{A^2} - O{M^2} = {\left( {3a} \right)^2} - {\left( {2a} \right)^2} = 5{a^2} \Rightarrow AM = a\sqrt 5 \)

Tam giác \(AMO\) vuông tại M có ME là đường cao nên:

\(ME.OA = OM.AM\) \( \Rightarrow ME = \dfrac{{OM.AM}}{{OA}} = \dfrac{{2a.a\sqrt 5 }}{{3a}} = \dfrac{{2a\sqrt 5 }}{3}\)

\( \Rightarrow MN = 2ME = 2.\dfrac{{2a\sqrt 5 }}{3} = \dfrac{{4a\sqrt 5 }}{3}\)

Tứ giác OMAN có hai đường chéo OA và MN vuông góc nên

\({S_{OMAN}} = \dfrac{1}{2}OA.MN = \dfrac{1}{2}.3a.\dfrac{{4a\sqrt 5 }}{3} = 2{a^2}\sqrt 5 \).

Vậy \({S_{OMAN}} = 2{a^2}\sqrt 5 \)

3) Gọi \(M'\) là điểm đối xứng với \(M\) qua \(O\)\(P\) là giao điểm của đường thẳng \(AO\)  và \(\left( O \right)\), \(P\)  nằm bên ngoài đoạn \(OA.\)  Tính \(\sin \angle MPN\).

Nối M’ với N ta có \(\angle MPN = \angle MM'N\) (hai góc nội tiếp cùng chắn cung \(MN\))

\( \Rightarrow \sin \angle MPN = \sin \angle MM'N\)

Tam giác MNM’ có \(\angle MNM' = {90^0}\) (góc nội tiếp chắn nửa đường tròn) nên là tam giác vuông tại N.

\( \Rightarrow \sin \angle MM'N = \dfrac{{MN}}{{MM'}} = \dfrac{{4a\sqrt 5 }}{3}:4a = \dfrac{{\sqrt 5 }}{3}\)

\( \Rightarrow \sin \angle MPN = \dfrac{{\sqrt 5 }}{3}\).

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com