Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian \(Oxyz,\) gọi \(M'\) là điểm đối xứng của điểm \(M\left( {2;0;1} \right)\) qua

Câu hỏi số 473999:
Vận dụng

Trong không gian \(Oxyz,\) gọi \(M'\) là điểm đối xứng của điểm \(M\left( {2;0;1} \right)\) qua đường thẳng \(\Delta :\,\,\,\dfrac{x}{1} = \dfrac{{y + 2}}{2} = \dfrac{{z - 1}}{1}\). Tính khoảng cách từ điểm \(M'\) đến mặt phẳng \(\left( {Oxy} \right).\)

Đáp án đúng là: A

Quảng cáo

Câu hỏi:473999
Phương pháp giải

- Viết phương trình mặt phẳng \(\left( P \right)\) là mặt phẳng đi qua \(M\) và vuông góc với \(\Delta \).

- Tìm tọa độ điểm \(H = \left( P \right) \cap \Delta \), khi đó \(H\) là trung điểm của \(MM'\), từ đó tìm tọa độ điểm \(M'\).

- Khoảng cách từ \(M\left( {{x_0};{y_0}} \right)\) đến mặt phẳng \(\left( P \right):\,\,Ax + By + Cz + D = 0\) là \(d\left( {M;\left( P \right)} \right) = \dfrac{{\left| {A{x_0} + B{y_0} + C{z_0} + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\).

Giải chi tiết

Ta có: \(\Delta :\,\,\,\dfrac{x}{1} = \dfrac{{y + 2}}{2} = \dfrac{{z - 1}}{1}\) và \(M\left( {2;\,\,0;\,\,1} \right)\)

Gọi \(\left( P \right)\) là mặt phẳng đi qua \(M\) và vuông góc với \(\Delta \) \( \Rightarrow \overrightarrow {{n_P}}  = \overrightarrow {{u_\Delta }}  = \left( {1;\,\,2;\,\,1} \right).\)

\( \Rightarrow \left( P \right):\,\,\,x - 2 + 2y + z - 1 = 0\) \( \Leftrightarrow x + 2y + z - 3 = 0.\)

Gọi \(H\) là giao điểm của \(\left( P \right)\) và \(\Delta \)

\( \Rightarrow \) Toạ độ của \(H\) là nghiệm của hệ phương trình:

\(\begin{array}{l}\,\,\,\,\,\,\,\,\,\,\left\{ \begin{array}{l}\dfrac{x}{1} = \dfrac{{y + 2}}{2} = \dfrac{{z - 1}}{1}\\x + 2y + z - 3 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = t\\y =  - 2 + 2t\\z = 1 + t\\x + 2y + z - 3 = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = t\\y =  - 2 + 2t\\z = 1 + t\\t - 4 + 4t + 1 + t - 3 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = t\\y =  - 2 + 2t\\z = 1 + t\\t = 1\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 0\\z = 2\end{array} \right. \Rightarrow H\left( {1;\,\,0;\,\,2} \right)\end{array}\)

Ta có: \(M'\) là điểm đối xứng của \(M\) qua \(\Delta \) \( \Rightarrow H\) là trung điểm của \(MM'\) \( \Rightarrow M'\left( {0;\,\,0;\,\,3} \right)\) 

Ta có: \(\left( {Oxy} \right):\,\,\,z = 0.\)

\( \Rightarrow d\left( {M;\,\,\left( {Oxy} \right)} \right) = \dfrac{{\left| 3 \right|}}{1} = 3.\) 

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com