Cho dòng điện xoay chiều chạy qua đoạn mạch AB có sơ đồ như hình bên, trong đó L là cuộn cảm thuần và X là đoạn mạch xoay chiều. Khi đó, điện áp giữa hai đầu các đoạn mạch AN và MB có biểu thức điện áp lần lượt là \({u_{AN}} = 30\sqrt 2 co{\rm{s}}\left( {\omega t} \right)\) (V) và \({u_{MB}} = 40\sqrt 2 cos\left( {\omega t - \frac{\pi }{2}} \right)\left( V \right)\) . Điện áp hiệu dụng giữa hai đầu đoạn mạch AB có giá trị nhỏ nhất là
Câu 488902: Cho dòng điện xoay chiều chạy qua đoạn mạch AB có sơ đồ như hình bên, trong đó L là cuộn cảm thuần và X là đoạn mạch xoay chiều. Khi đó, điện áp giữa hai đầu các đoạn mạch AN và MB có biểu thức điện áp lần lượt là \({u_{AN}} = 30\sqrt 2 co{\rm{s}}\left( {\omega t} \right)\) (V) và \({u_{MB}} = 40\sqrt 2 cos\left( {\omega t - \frac{\pi }{2}} \right)\left( V \right)\) . Điện áp hiệu dụng giữa hai đầu đoạn mạch AB có giá trị nhỏ nhất là
A. 16V.
B. 50V.
C. 32V.
D. 24V.
+ Sử dụng giản đồ véctơ
+ Sử dụng các hệ thức lượng trong tam giác.
-
Đáp án : D(0) bình luận (0) lời giải
Giải chi tiết:
Ta có: \(\left\{ \begin{array}{l}{u_{AN}} = {u_L} + {u_X}\\{u_{MB}} = {u_C} + {u_X}\\{u_{AB}} = {u_{AN}} + {u_C}\end{array} \right.\)
Theo đề bài, ta có độ lệch pha giữa \({u_{AN}}\) và \({u_{MB}}\) là \(\frac{\pi }{2}\) hay nói cách khác \({u_{AN}} \bot {u_{MB}}\)
Vẽ trên giản đồ véctơ ta được:
Từ giản đồ, ta có \({U_{AB}} \ge OH \Rightarrow {U_{AB\min }} = OH\)
Sử dụng hệ thức lượng trong tam giác vuông \(O{U_{AN}}{U_{MB}}\) ta có:
\(\begin{array}{l}\frac{1}{{O{H^2}}} = \frac{1}{{U_{AN}^2}} + \frac{1}{{U_{MB}^2}} = \frac{1}{{{{30}^2}}} + \frac{1}{{{{40}^2}}} = \frac{1}{{576}}\\ \Rightarrow OH = 24 \Rightarrow {U_{AB\min }} = OH = 24V\end{array}\)
Lời giải sai Bình thường Khá hay Rất Hay
Hỗ trợ - Hướng dẫn

-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com