Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Ở mặt chất lỏng, tại hai điểm A và B có hai nguồn dao động cùng pha theo phương vuông góc với mặt chất lỏng phát ra hai sóng kết hợp với bước sóng \(\lambda \). Gọi C, D là hai điểm ở mặt chất lỏng sao cho ABCD là hình vuông. I là trung điểm của AB. M là một điểm nằm trong hình vuông ABCD xa I nhất mà phần tử chất lỏng tại đó dao động với biên độ cực đại và cùng pha với nguồn. Biết \(AB = 2,4\lambda \). Độ dài đoạn thẳng MI gần nhất giá trị nào sau đây?

Câu 488903: Ở mặt chất lỏng, tại hai điểm A và B có hai nguồn dao động cùng pha theo phương vuông góc với mặt chất lỏng phát ra hai sóng kết hợp với bước sóng \(\lambda \). Gọi C, D là hai điểm ở mặt chất lỏng sao cho ABCD là hình vuông. I là trung điểm của AB. M là một điểm nằm trong hình vuông ABCD xa I nhất mà phần tử chất lỏng tại đó dao động với biên độ cực đại và cùng pha với nguồn. Biết \(AB = 2,4\lambda \). Độ dài đoạn thẳng MI gần nhất giá trị nào sau đây?

A. \(2,93\lambda .\)

B. \(2,25\lambda .\)

C. \(1,60\lambda .\)

D. \(2,35\lambda .\)

Câu hỏi : 488903

Quảng cáo

Phương pháp giải:

+ Sử dụng điều kiện cực đại giao thoa của hai nguồn cùng pha: \({d_2} - {d_1} = k\lambda \)

+ Sử dụng công thức đường trung tuyến trong tam giác.

  • Đáp án : B
    (0) bình luận (0) lời giải

    Giải chi tiết:

    Chuẩn hóa, ta cho \(\lambda  = 1 \Rightarrow \left\{ \begin{array}{l}AB = 2,4\\AC = AB\sqrt 2  = 2,4\sqrt 2 \end{array} \right.\)

    M dao động với biên độ cực đại, cùng pha với nguồn:

    \(\left\{ \begin{array}{l}MA = {k_1}\lambda  = {k_1}\\MB = {k_2}\lambda  = {k_2}\end{array} \right.\) với \({k_1},{k_2}\) là số nguyên.

    Ta có:

    *\(CI\) là trung tuyến của \(\Delta CAB\) nên ta có: \(C{I^2} = \frac{{A{C^2} + B{C^2}}}{2} - \frac{{A{B^2}}}{4}\)

    \( \Rightarrow CI = \sqrt {\frac{{{{\left( {2,4\sqrt 2 } \right)}^2} + 2,{4^2}}}{2} - \frac{{2,{4^2}}}{4}}  = \frac{{6\sqrt 5 }}{5}\)

    * MI là trung tuyến của \(\Delta MAB\) nên ta có: \(M{I^2} = \frac{{M{A^2} + M{B^2}}}{2} - \frac{{A{B^2}}}{4}\)

    Lại có M là 1 điểm nằm trong hình vuông ABCD nên:

    + \(MA < AC \Leftrightarrow {k_1} < 2,4\sqrt 2  = 3,39 \Rightarrow {k_1} \le 3\)

    + \(MI < CI \Leftrightarrow \frac{{M{A^2} + M{B^2}}}{2} - \frac{{A{B^2}}}{4} < B{C^2} + B{I^2}\)

    \(\begin{array}{l} \Leftrightarrow \frac{{M{A^2} + M{B^2}}}{2} - \frac{{A{B^2}}}{4} < A{B^2} + \frac{{A{B^2}}}{4}\\ \Rightarrow \frac{{M{A^2} + M{B^2}}}{2} < \frac{3}{2}A{B^2} = \frac{3}{2}.2,{4^2} = 8,64\end{array}\)

    \( \Rightarrow M{A^2} + M{B^2} < 17,28 \Rightarrow k_1^2 + k_2^2 < 17,28\,\,\,\,\left( 1 \right)\)

    Lại có: \(M{B^2} + A{B^2} > M{A^2} \Rightarrow k_2^2 + 2,{4^2} > k_1^2\,\,\,\left( 2 \right)\)

    Đặt \(MH = x\) \(\left( {x < 2,4} \right)\)\( \Rightarrow \sqrt {M{A^2} - {x^2}}  + \sqrt {M{B^2} - {x^2}}  = AB\)

    \( \Rightarrow \sqrt {k_1^2 - {x^2}}  + \sqrt {k_2^2 - {x^2}}  = 2,4\,\,\,\,\,\left( 3 \right)\)

    Xét các cặp \({k_1}\) và \({k_2}\) thỏa mãn (1), (2) và (3) ta tìm được \(\left\{ \begin{array}{l}{k_1} = 3\\{k_2} = 2\end{array} \right.\) \(\)

    \( \Rightarrow MI = \sqrt {\frac{{k_1^2 + k_2^2}}{2} - \frac{{2,{4^2}}}{4}}  = 2,2494\)

    Lời giải sai Bình thường Khá hay Rất Hay
Xem bình luận

>> Luyện thi TN THPT & ĐH năm 2024 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com