Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hai hàm số \(f\left( x \right),\,\,g\left( x \right)\) liên tục trên đoạn \(\left[ {1;2} \right]\) và

Câu hỏi số 494393:
Thông hiểu

Cho hai hàm số \(f\left( x \right),\,\,g\left( x \right)\) liên tục trên đoạn \(\left[ {1;2} \right]\) và thỏa mãn \(\int\limits_1^2 {\left[ {3f\left( x \right) + 2g\left( x \right)} \right]dx}  = 1\), \(\int\limits_1^2 {\left[ {2f\left( x \right) - g\left( x \right)} \right]dx}  =  - 3\). Khi đó, \(\int\limits_1^2 {f\left( x \right)dx} \) bằng:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:494393
Giải chi tiết

Ta có: \(\left\{ \begin{array}{l}\int\limits_1^2 {\left[ {3f\left( x \right) + 2g\left( x \right)} \right]dx}  = 1\\\int\limits_1^2 {\left[ {2f\left( x \right) - g\left( x \right)} \right]dx}  =  - 3\end{array} \right.\) \( \Rightarrow \left\{ \begin{array}{l}3\int\limits_1^2 {f\left( x \right)dx}  + 2\int\limits_1^2 {g\left( x \right)dx}  = 1\\2\int\limits_1^2 {f\left( x \right)dx}  - \int\limits_1^2 {g\left( x \right)dx}  =  - 3\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}\int\limits_1^2 {f\left( x \right)dx}  =  - \dfrac{5}{7}\\\int\limits_1^2 {g\left( x \right)dx}  = \dfrac{{11}}{7}\end{array} \right.\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com