Hình giải tích trong không gian
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng: D1:
Và D2 là giao tuyến của hai mặt phẳng (P) : 3y – z – 7 = 0, (Q): 3x + 3y – 2z -17 = 0. Cho A, B chạy trên D1; C, D chạy trên D2 sao cho AB = 5cm, CD = 7cm. Tính thể tích của tứ diện ABCD.
Đáp án đúng là: C
Quảng cáo
Đáp án cần chọn là: C
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com


= (2; 1; -1) => d1: 

,
],
=>M2(1;0;-7)
=
[ 
AB.CD.d( AB, CD).sin(
)
S∆ABC.d A,(BCD))
A1C.Cdsin =
.
= 0
= 
.










