Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một tổ sản xuất phải

Câu hỏi số 505511:
Vận dụng

Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một tổ sản xuất phải làm xong 4800 bộ đồ bảo hộ y tế trong một số ngày quy định. Thực tế, mỗi ngày tổ đã làm được nhiều hơn 100 bộ đồ bảo hộ y tế so với bộ đồ bảo hộ y tế phải làm trong một ngày theo kế hoạch. Vì thế 8 ngày trước khi hết thời hạn, tổ sản xuất đã làm xong 4800 bộ đồ bảo hộ y tế đó. Hỏi theo kế hoạch, mỗi ngày tổ sản xuất phải làm bao nhiêu bộ đồ bảo hộ y tế? (Giả định rằng số bộ đồ bảo hộ y tế mà tổ đó làm xong trong mỗi ngày là bằng nhau).

Quảng cáo

Câu hỏi:505511
Phương pháp giải

Gọi số bộ đồ bảo hộ y tế tổ sản xuất phải làm trong một ngày theo kế hoạch là \(x\) (bộ), \(\left( {x \in {\mathbb{N}^*}} \right).\)

Biểu diễn các đại lượng chưa biết theo các đại lượng đã biết và ẩn \(x\) vừa gọi.

Dựa vào giả thiết Giải Câu cho để lập phương trình.

Giải phương trình tìm ẩn \(x\) và đối chiếu với điều kiện xác định.

Kết luận.

Giải chi tiết

Gọi số bộ đồ bảo hộ y tế tổ sản xuất phải làm trong một ngày theo kế hoạch là \(x\) (bộ), \(\left( {x \in {\mathbb{N}^*}} \right).\)

\( \Rightarrow \) Thời gian theo kế hoạch tổ sản xuất làm xong \(4800\) bộ đồ là: \(\frac{{4800}}{x}\) (ngày).

Thực tế mỗi ngày, tổ đó làm được số bộ đồ bảo hộ y tế là:\(x + 100\) (bộ).

\( \Rightarrow \) Thời gian thực tế tổ sản xuất làm xong \(4800\) bộ đồ là: \(\frac{{4800}}{{x + 100}}\) (ngày).

Theo đề bài, tổ sản xuất đã làm xong \(4800\) bộ đồ trước \(8\) ngày so với kế hoạch nên ta có phương trình:

\(\begin{array}{*{20}{l}}{\dfrac{{4800}}{x} - \dfrac{{4800}}{{x + 100}} = 8}\\{4800\left( {x + 100} \right) - 4800x = 8x\left( {x + 100} \right)}\\{600\left( {x + 100} \right) - 600x = x\left( {x + 100} \right)}\\{600x + 60000 - 600x = {x^2} + 100x}\\{{x^2} + 100x - 60000 = 0}\end{array}\)

Phương trình có: \(\Delta ' = {50^2} + 60000 = 62500 > 0\)

\( \Rightarrow \) Phương trình có hai nghiệm phân biệt: \({x_1} = {\rm{ \;}} - 50 + \sqrt {62500} {\rm{ \;}} = 200{\mkern 1mu} {\mkern 1mu} \left( {tm} \right)\) và \({x_2} = {\rm{ \;}} - 50 - \sqrt {62500} {\rm{ \;}} = {\rm{ \;}} - 300{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( {ktm} \right)\)

Vậy theo kế hoạch, mỗi ngày tổ sản xuất phải làm \(200\) bộ đồ bảo hộ y tế.

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com