Với các số thực \(a\) và \(b\) thỏa mãn \({a^2} + {b^2} = 2\), tìm giá trị nhỏ nhất của biểu
Với các số thực \(a\) và \(b\) thỏa mãn \({a^2} + {b^2} = 2\), tìm giá trị nhỏ nhất của biểu thức \(P = 3\left( {a + b} \right) + ab\).
Quảng cáo
Kết hợp với giả thiết \({a^2} + {b^2} = 2\) biến đổi biểu thức \(P = 3\left( {a + b} \right) + ab\) trở thành \(P = \frac{1}{2}{\left( {a + b + 3} \right)^2} - \frac{{11}}{2}\)
Sau đó áp dụng Áp dụng BĐT Bunhiacopxki để tìm giá trị nhỏ nhất của biểu thức ban đầu
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com










