Cho hình bình hành \(ABCD\). Gọi \(O\) là giao điểm của \(AC\) và \(BD\);\(M,N\) theo thứ tự là trung
Cho hình bình hành \(ABCD\). Gọi \(O\) là giao điểm của \(AC\) và \(BD\);\(M,N\) theo thứ tự là trung điểm của các cạnh \(BC,AD\). Chứng minh:
a) Tứ giác \(AMCN\) là hình bình hành
b) Ba điểm \(M,O,N\) thẳng hàng
Quảng cáo
a) Sử dụng dấu hiệu nhận biết của hình bình hành: tứ giác có 1 cặp cạnh đối song song và bằng nhau là hình bình hành
b) Theo chứng minh a, ta chứng minh \(O\) là trung điểm của \(AC\) để suy ra \(M,O,N\) thẳng hàng
>> Học trực tuyến lớp 8 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com











