Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm điều kiện xác định của mỗi biểu thức sau và chứng minh rằng với điều kiện đó biểu

Câu hỏi số 509770:
Vận dụng

Tìm điều kiện xác định của mỗi biểu thức sau và chứng minh rằng với điều kiện đó biểu thức không phụ thuộc vào biến: \(\frac{2}{{x - 2}} - \frac{2}{{{x^2} - x - 2}}.\left( {1 + \frac{{3x + {x^2}}}{{x + 3}}} \right)\).

Quảng cáo

Câu hỏi:509770
Phương pháp giải

Xác định điều kiện của từng phân thức sau đó kết luận

Vận dụng quy tắc cộng, trừ, nhân, chia các phân thức đại số.

Áp dụng các hẳng đẳng thức được học để biến đổi rút gọn các biểu thức.

Giải chi tiết

Điều kiện: \(\left\{ \begin{array}{l}x - 2 \ne 0\\{x^2} - x - 2 \ne 0\\x + 3 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne 2\\\left( {x + 1} \right)\left( {x - 2} \right) \ne 0\\x \ne  - 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne 2\\x \ne  - 1\\x \ne  - 3\end{array} \right.\)

Vậy điều kiện xác định của biểu thức là: \(x \ne 2;x \ne  - 1;x \ne  - 3\)

\(\begin{array}{l}\,\,\,\,\,\,\frac{2}{{x - 2}} - \frac{2}{{{x^2} - x - 2}}.\left( {1 + \frac{{3x + {x^2}}}{{x + 3}}} \right)\\ = \frac{2}{{x - 2}} - \frac{2}{{\left( {x + 1} \right)\left( {x - 2} \right)}}.\left[ {1 + \frac{{x\left( {3 + x} \right)}}{{x + 3}}} \right]\\ = \frac{2}{{x - 2}} - \frac{2}{{\left( {x + 1} \right)\left( {x - 2} \right)}}.\left( {1 + x} \right)\\ = \frac{2}{{x - 2}} - \frac{2}{{x - 2}}\\ = 0\end{array}\)

Vậy giá trị của biểu thức không phụ thuộc vào giá trị của biến \(x\).

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 8 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com