Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Hoàn thành bài sau:a) Cho \(A = {9^{23}} + {5.3^{43}}.\) Chứng minh \(A\) chia hết cho \(32\).b) Chứng minh

Câu hỏi số 516621:
Vận dụng cao

Hoàn thành bài sau:

a) Cho \(A = {9^{23}} + {5.3^{43}}.\) Chứng minh \(A\) chia hết cho \(32\).

b) Chứng minh rằng nếu \(p\) là số nguyên tố lớn hơn \(3\) thì \(\left( {p - 1} \right)\left( {p + 1} \right)\) chia hết cho \(24.\)

Quảng cáo

Câu hỏi:516621
Phương pháp giải

a) Biến đổi \(A\) về dạng tích có chứa thừa số \(32\).

b) Sử dụng tính chất số nguyên tố có thể có dạng \(6k + 1\) hoặc \(6k + 5\).

Giải chi tiết

a) Ta có:

\(\begin{array}{l}A = {9^{23}} + {5.3^{43}}\\A = {\left( {{3^2}} \right)^{23}} + {5.3^{43}}\\A = {3^{46}} + {5.3^{43}}\\A = {3^{43}}\left( {{3^3} + 5} \right)\\A = {3^{43}}.32\,\, \vdots \,\,32\end{array}\)

Vậy \(A\,\, \vdots \,\,32\).

b) Nếu \(p = 5\) thì \(\left( {5 - 1} \right)\left( {5 + 1} \right) = 4.6 = 24\,\, \vdots \,\,24\) (đúng).

Nếu \(p > 5\) thì \(p\) có dạng \(6k + 1\) hoặc \(6k + 5\).

+) Nếu \(p = 6k + 1\) thì \(\left( {p - 1} \right)\left( {p + 1} \right)\) \( = \left( {6k + 1 - 1} \right)\left( {6k + 1 + 1} \right)\) \( = 6k.\left( {6k + 2} \right)\)

\( = 6k.2\left( {3k + 1} \right) = 12k\left( {3k + 1} \right)\)

Nếu \(k\) chẵn thì \(12k\,\, \vdots \,\,24\) nên  hay \(\left( {p - 1} \right)\left( {p + 1} \right)\,\, \vdots \,\,24\)

Nếu \(k\) lẻ thì \(3k + 1\) chẵn nên \(12k\left( {3k + 1} \right)\,\, \vdots \,\,24\) hay \(\left( {p - 1} \right)\left( {p + 1} \right)\,\, \vdots \,\,24\)

Do đó nếu \(p = 6k + 1\) thì \(\left( {p - 1} \right)\left( {p + 1} \right)\,\, \vdots \,\,24\)

+) Nếu \(p = 6k + 5\) thì \(\left( {p - 1} \right)\left( {p + 1} \right)\) \( = \left( {6k + 5 - 1} \right)\left( {6k + 5 + 1} \right)\) \( = \left( {6k + 4} \right).\left( {6k + 6} \right)\)

\( = 2\left( {3k + 2} \right).6\left( {k + 1} \right)\)\( = 12\left( {k + 1} \right)\left( {3k + 2} \right)\)

Nếu \(k\) chẵn thì \(3k + 2\) chẵn nên \(12\left( {k + 1} \right)\left( {3k + 2} \right)\,\, \vdots \,\,24\) hay \(\left( {p - 1} \right)\left( {p + 1} \right)\,\, \vdots \,\,24\)

Nếu \(k\) lẻ thì \(k + 1\) chẵn nên \(12\left( {k + 1} \right)\left( {3k + 2} \right)\,\, \vdots \,\,24\) hay \(\left( {p - 1} \right)\left( {p + 1} \right)\,\, \vdots \,\,24\)

Do đó, nếu \(p = 6k + 5\) thì \(\left( {p - 1} \right)\left( {p + 1} \right)\,\, \vdots \,\,24\).

Vậy với \(p\) nguyên tố lớn hơn \(3\) thì \(\left( {p - 1} \right)\left( {p + 1} \right)\,\, \vdots \,\,24\).

Tham Gia Group Dành Cho 2K13 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 6 chương trình mới trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 6 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com