Cho đường tròn tâm \(O\) và điểm \(A\) nằm bên ngoài đường tròn. Từ điểm \(A\) vẽ các tiếp
Cho đường tròn tâm \(O\) và điểm \(A\) nằm bên ngoài đường tròn. Từ điểm \(A\) vẽ các tiếp tuyến \(AB,\,\,AC\) với đường tròn (\(B,\,\,C\) là các tiếp điểm).
a) Chứng minh tứ giác \(ABOC\) là tứ giác nội tiếp.
b) Vẽ cát tuyến \(ADE\) không đi qua tâm \(O\) của đường tròn (\(D\) nằm giữa \(A\) và \(E\)). Gọi \(M\) là trung điểm của \(DE\). Chứng minh \(MA\) là tia phân giác của góc \(BMC\).
Quảng cáo
a) Vận dụng dấu hiệu nhận biết của tứ giác nội tiếp: tứ giác có tổng hai góc đối bằng \({180^0}\) là tứ giác nội tiếp.
b) Chứng minh năm điểm \(O,\,\,B,\,\,A,\,\,C,\,\,M\) cùng thuộc một đường tròn.
Vận dụng kiến thức góc – đường tròn chứng minh các cặp góc bằng nhau
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com











