Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho đường tròn tâm \(O\) và điểm \(A\) nằm bên ngoài đường tròn. Từ điểm \(A\) vẽ các tiếp

Câu hỏi số 516870:
Vận dụng

Cho đường tròn tâm \(O\) và điểm \(A\) nằm bên ngoài đường tròn. Từ điểm \(A\) vẽ các tiếp tuyến \(AB,\,\,AC\) với đường tròn (\(B,\,\,C\) là các tiếp điểm).

a) Chứng minh tứ giác \(ABOC\) là tứ giác nội tiếp.

b) Vẽ cát tuyến \(ADE\) không đi qua tâm \(O\) của đường tròn (\(D\) nằm giữa \(A\) và \(E\)). Gọi \(M\) là trung điểm của \(DE\). Chứng minh \(MA\) là tia phân giác của góc \(BMC\).

Quảng cáo

Câu hỏi:516870
Phương pháp giải

a) Vận dụng dấu hiệu nhận biết của tứ giác nội tiếp: tứ giác có tổng hai góc đối bằng \({180^0}\) là tứ giác nội tiếp.

b) Chứng minh năm điểm \(O,\,\,B,\,\,A,\,\,C,\,\,M\) cùng thuộc một đường tròn.

Vận dụng kiến thức góc – đường tròn chứng minh các cặp góc bằng nhau

Giải chi tiết

a) Vì \(AB,\,\,AC\) là các tiếp tuyến của \(\left( O \right)\) lần lượt tại \(A,\,\,B\) nên \(\left\{ \begin{array}{l}OB \bot AB \Rightarrow \angle OBA = {90^0}\\OC \bot AC \Rightarrow \angle OCA = {90^0}\end{array} \right.\) (định nghĩa).

Xét tứ giác \(ABOC\) có \(\angle OBA + \angle OCA = {90^0} + {90^0} = {180^0}\).

Vậy \(ABOC\) là tứ giác nội tiếp (dhnb).

b) Vì \(M\) là trung điểm của \(DE\) nên \(OM \bot DE\) (quan hệ vuông góc giữa đường kính và dây cung) \( \Rightarrow \angle OMA = {90^0}\).

Xét tứ giác \(OMAC\) có \(\angle OMA + \angle OCA = {90^0} + {90^0} = {180^0}\) nên \(OMAC\) là tứ giác nội tiếp (dhnb).

\( \Rightarrow \) Năm điểm \(O,\,\,B,\,\,A,\,\,C,\,\,M\) cùng thuộc một đường tròn.

Ta có: \(\angle AMC = \angle AOC\) (2 góc nội tiếp cùng chắn cung \(AC\)).

          \(\angle AMB = \angle AOB\) (2 góc nội tiếp cùng chắn cung \(AB\)).

Mà \(\angle AOC = \angle AOB\) (tính chất hai tiếp tuyến cắt nhau).

\( \Rightarrow \angle AMC = \angle AMB\).

Vậy \(MA\) là tia phân giác của góc \(BMC\).

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com