Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên R và có đồ thị \(y = f'\left( x \right)\) như

Câu hỏi số 517887:
Vận dụng

Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên R và có đồ thị \(y = f'\left( x \right)\) như hình vẽ.

Xét hàm số \(g\left( x \right) = f\left( {{x^2} - 2} \right).\)

Mệnh đề nào sau đây sai?

Đáp án đúng là: B

Quảng cáo

Câu hỏi:517887
Phương pháp giải

Tính \(g'\left( x \right) = {\left[ {f\left( {{x^2} - 2} \right)} \right]^\prime } = 2xf'\left( {{x^2} - 2} \right).\)

Lập bảng xét dấu của \(g'\left( x \right)\), từ đó suy ra các khoảng đồng biến, nghịch biến.

Giải chi tiết

Ta có \(g'\left( x \right) = {\left[ {f\left( {{x^2} - 2} \right)} \right]^\prime } = 2xf'\left( {{x^2} - 2} \right).\)

\(g'\left( x \right) = 0 \Leftrightarrow 2xf'\left( {{x^2} - 2} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\f'\left( {{x^2} - 2} \right) = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} - 2 = a\,\,\left( { - 2 < a < 0} \right)\\{x^2} - 2 = 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  \pm \sqrt {a + 2} \\x =  \pm 2\end{array} \right..\)

Chú ý: Nghiệm \(x =  \pm \sqrt {a + 2} \) là nghiệm bội chẵn nên qua đó dấu đạo hàm không đổi.

Ta có bảng xét dấu của \(g'\left( x \right)\)

Từ bảng xét dấu, suy ra hàm số đồng biến trên \(\left( { - 2;0} \right).\)

Suy ra mệnh đề B sai.

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com