Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho góc nhọn \(xOy\), lấy điểm \(A\) trên tia \(Ox\) (điểm\(A\) khác \(O\)) và điểm \(B\) trên tia

Câu hỏi số 522861:
Vận dụng

Cho góc nhọn \(xOy\), lấy điểm \(A\) trên tia \(Ox\) (điểm\(A\) khác \(O\)) và điểm \(B\) trên tia \(Oy\) sao cho \(OA = OB\). Gọi \(M\) là trung điểm của \(AB\).

a) Chứng minh: \(\Delta OAM = \Delta OBM\)

b) Trên tia \(OM\) lấy điểm \(H\) sao cho \(OM < OH\). Chứng minh \(HA = HB\).

c) Qua \(H\) kẻ đường thẳng song song với \(AB\) cắt \(Ox\) tại \(E\) cắt \(Oy\) tại \(K\). Chứng minh \(OH\) là đương trung trực của \(EK\).

d) Gọi giao điểm của \(AK\) và \(BE\) là \(N\). Chứng minh ba điểm \(O,M,N\) thẳng hàng.

Quảng cáo

Câu hỏi:522861
Phương pháp giải

a) Chứng minh \(\Delta OAM = \Delta OBM\left( {c.c.c} \right)\)

b) Chứng minh \(\Delta OAH = \Delta OBH\left( {c.g.c} \right) \Rightarrow HA = HB\) (hai cạnh tương ứng)

c) Chứng minh \(\Delta OHK = \Delta OHE\left( {c.g.c} \right)\)

Suy ra, \(HK = HE \Rightarrow H\) là trung điểm của \(EK\,\,\,\left( 1 \right)\)

\(\angle OHK = \angle OHE\)\( \Rightarrow OH \bot EK\) tại \(H\,\,\,\left( 2 \right)\)

Từ (1) và (2), suy ra \(OH\) là đường trung trực của \(EK\).

d) Chứng minh \(\Delta OAK = \Delta OBE\left( {c.g.c} \right)\) từ đó chứng minh được \(\angle NBK = \angle NAE\)

Chứng minh \(\Delta NBK = \Delta NHE\left( {c.c.c} \right) \Rightarrow \angle NHK = \angle NHE\) từ đó chứng minh được \(NH \bot EK\) tại \(H\)

Giải chi tiết

a) \(M\) là trung điểm của \(AB \Rightarrow MA = MB\)

Xét \(\Delta OAM\) và \(\Delta OBM\) có:

\(\left. \begin{array}{l}OM\,\,\,chung\\OA = OB\left( {gt} \right)\\MA = MB\left( {cmt} \right)\end{array} \right\} \Rightarrow \Delta OAM = \Delta OBM\left( {c.c.c} \right)\)

b) \(\Delta OAM = \Delta OBM\left( {cmt} \right) \Rightarrow \angle AOM = \angle BOM\) (hai góc tương ứng)

Xét \(\Delta OAH\) và \(\Delta OBH\) có:

\(\left. \begin{array}{l}OH\,\,\,chung\\\angle AOM = \angle BOM\left( {cmt} \right)\\OA = OB\left( {gt} \right)\end{array} \right\} \Rightarrow \Delta OAH = \Delta OBH\left( {c.g.c} \right) \Rightarrow HA = HB\) (hai cạnh tương ứng)

c) Ta có: \(OA = OB\left( {gt} \right) \Rightarrow \Delta OAB\) cân tại \(O \Rightarrow \angle OAB = \angle OBA\)

Vì \(AB\)//\(EK\), suy ra: \(\angle OBA = \angle OKE\) (hai góc ở vị trí đồng vị) và \(\angle OAB = \angle OEK\) (hai góc ở trí đồng vị)

Từ đó, suy ra \(\angle OKE = \angle OEK \Rightarrow \Delta OEK\) cân tại \(O \Rightarrow OK = OE\)

Xét \(\Delta OHK\) và \(\Delta OHE\) có:

\(\left. \begin{array}{l}OK = OE\left( {cmt} \right)\\\angle KOH = \angle EOH\,\left( {do\,\,\angle BOM = \angle AOM} \right)\\OH\,\,chung\end{array} \right\} \Rightarrow \Delta OHK = \Delta OHE\left( {c.g.c} \right)\)

Suy ra,

+ \(HK = HE\) (hai cạnh tương ứng) \( \Rightarrow H\)là trung điểm của \(EK\,\,\,\left( 1 \right)\)

+ \(\angle OHK = \angle OHE\) (hai góc tương ứng) mà \(\angle OHK + \angle OHE = {180^0}\) nên \(\angle OHK = \angle OHE = \dfrac{{{{180}^0}}}{2} = {90^0}\), do đó \(OH \bot EK\) tại \(H\,\,\,\left( 2 \right)\)

Từ (1) và (2), suy ra \(OH\) là đường trung trực của \(EK\).

d) Ta có: \(AE = OE - OA\,;\,\,BK = OK - OB\) mà \(OE = OK\,;\,\,OA = OB\)

Suy ra, \(AE = BK\)

Xét \(\Delta OAK\) và \(\Delta OBE\) có:

\(\left. \begin{array}{l}OA = OB\left( {cmt} \right)\\\angle O\,\,chung\\OK = OH\left( {cmt} \right)\end{array} \right\} \Rightarrow \Delta OAK = \Delta OBE\left( {c.g.c} \right)\)

Suy ra, \(\angle OKA = \angle OEB\) và \(\angle OAH = \angle OBE\) (hai góc tương ứng)

Ta có: \(\left\{ \begin{array}{l}\angle NBK = {180^0} - \angle OBE\\\angle NAE = {180^0} - \angle OAK\end{array} \right.\)

Do đó, \(\angle NBK = \angle NAE\)

Xét \(\Delta NBK\) và \(\Delta NHE\) có:

\(\left. \begin{array}{l}\angle NBK = \angle NAE\left( {cmt} \right)\\BK = AE\left( {cmt} \right)\\\angle OKA = \angle OEB\left( {cmt} \right)\end{array} \right\} \Rightarrow \Delta NBK = \Delta NHE\left( {c.c.c} \right) \Rightarrow \angle NHK = \angle NHE\) (hai góc tương ứng)

Mà \(\angle NHK + \angle NHE = {180^0}\)

\( \Rightarrow \angle NHK = \angle NHE = \dfrac{{{{180}^0}}}{2} = {90^0}\)

\( \Rightarrow NH \bot EK\) tại \(H\) mà \(OH \bot EK\) tại \(H\)

\( \Rightarrow NH \equiv OH\)

\( \Rightarrow O,N,H\) thẳng hàng

\( \Rightarrow O,M,H\) thẳng hàng.

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 7 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com