Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = {x^2}\) có đồ thị (P) và đường thẳng \(\left( d \right):{\rm{ }}y = kx - 2k + 4.\) a)

Câu hỏi số 532011:
Vận dụng

Cho hàm số \(y = {x^2}\) có đồ thị (P) và đường thẳng \(\left( d \right):{\rm{ }}y = kx - 2k + 4.\)

a) Vẽ đồ thị \((P)\). Chứng minh rằng \(\left( d \right)\) luôn đi qua điểm \(C\left( {2;4} \right)\).

b) Gọi \(H\) là hình chiếu của điểm \(B\left( { - 4;4} \right)\) trên \(\left( d \right)\). Chứng minh rằng khi \(k\) thay đổi (\(k \ne 0\)) thì diện tích tam giác \(HBC\) không vượt quá \(9{\rm{ }}cm\)(đơn vị đo trên các trục tọa độ là xentimét).

Quảng cáo

Câu hỏi:532011
Phương pháp giải

a) Vẽ đồ thị của hàm số \(y = a{x^2}\left( {a \ne 0} \right)\)

+ Nhận xét về hệ số \(a\) và sự biến thiên của hàm số

+ Lập bảng giá trị tương ứng của \(x\) và \(y\)

+ Xác định được các điểm mà đồ thị đi qua, vẽ đồ thị.

Thay \(x = 2;\,\,y = 4\) vào phương trình đường thẳng \(\left( d \right):{\rm{ }}y = kx - 2k + 4\), ta chứng minh được điều luôn đúng, từ đó có được điều phải chứng minh.

b) Tính diện tích \(\Delta HBC\)

Áp dụng định lý Py – ta – go, tính được \(BC\)

Biện luận, từ đó chứng minh được yêu cầu của đề bài.

Giải chi tiết

a) Parabol \(\left( P \right):\,\,y = {x^2}\) có bề lõm hướng lên và nhận \(Oy\) làm trục đối xứng.

Hệ số \(a = 1 > 0\) nên hàm số đồng biến khi \(x > 0\) và nghịch biến khi \(x < 0\).

Ta có bảng giá trị sau:

\( \Rightarrow \) Parabol \(\left( P \right):\,\,y = {x^2}\) đi qua các điểm \(\left( { - 2;4} \right)\), \(\left( { - 1;1} \right)\), \(\left( {0;0} \right)\), \(\left( {1;1} \right)\), \(\left( {2;4} \right)\).

Đồ thị Parabol \(\left( P \right):\,\,y = {x^2}\):

Thay \(x = 2;\,\,y = 4\) vào phương trình đường thẳng \(\left( d \right):{\rm{ }}y = kx - 2k + 4.\) ta được:

\(4 = 2k - 2k + 4 \Leftrightarrow 4 = 4\) (luôn đúng với mọi \(k\))

Vậy \(\left( d \right)\) luôn đi qua điểm \(C\left( {2;4} \right)\) với mọi \(k\).

b)

Vì \(\Delta HBC\) vuông tại \(H\) nên ta có \({S_{\Delta HBC}} = \dfrac{1}{2}HB.HC \le \dfrac{1}{4}.\left( {H{B^2} + H{C^2}} \right)\).

Áp dụng định lí Py – ta – go,  ta có: \(H{B^2} + H{C^2} = B{C^2} = {6^2} = 36\).

\( \Rightarrow {S_{\Delta HBC}} \le \dfrac{1}{4}.36 = 9\) (đpcm).

Dấu “=” xảy ra khi và chỉ khi \(HB = HC \Rightarrow \Delta HBC\) vuông cân tại \(H\).

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com