Cho parabol \(\left( P \right):\,\,y = 2{x^2}\) và đường thẳng \(\left( d \right):\,\,y = x + 1\).a) Vẽ
Cho parabol \(\left( P \right):\,\,y = 2{x^2}\) và đường thẳng \(\left( d \right):\,\,y = x + 1\).
a) Vẽ parabol \(\left( P \right)\) và đường thẳng \(d\) trên cùng một hệ trục tọa độ \(Oxy\).
b) Tìm tọa độ giao điểm của \(\left( P \right)\) và \(\left( d \right)\) bằng phép tính.
Quảng cáo
a) Vẽ đồ thị của hàm số \(y = a{x^2}\left( {a \ne 0} \right)\)
+ Nhận xét về hệ số \(a\) và sự biến thiên của hàm số
+ Lập bảng giá trị tương ứng của \(x\) và \(y\)
+ Xác định được các điểm mà đồ thị đi qua, vẽ đồ thị.
Vẽ đồ thị của hàm số \(y = ax + b\)
+ Lập bảng giá trị tương ứng của \(x\) và \(y\)
+ Xác định được các điểm mà đồ thị đi qua, vẽ đồ thị.
b) Xét phương trình hoành độ giao điểm giữa \(\left( P \right)\) và \(\left( d \right)\)
Tính nhẩm nghiệm của phương trình bậc hai: Nếu \(a + b + c = 0\) thì phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\) có hai nghiệm phân biệt: \({x_1} = 1;{x_2} = \dfrac{c}{a}\)
Với mỗi \({x_i}\) tìm được ta tìm được \({y_i}\)
Kết luận giao điểm của \(\left( P \right)\) và \(\left( d \right)\) là: \(\left( {{x_i};{y_i}} \right)\)
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













