Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tứ giác \(ABCD\) nội tiếp trong đường tròn \(\left( O \right)\). Biết \(\angle BAD = {105^0}\) và

Câu hỏi số 541133:
Vận dụng

Cho tứ giác \(ABCD\) nội tiếp trong đường tròn \(\left( O \right)\). Biết \(\angle BAD = {105^0}\) và \(\angle DBC = {45^0}\). Khi đó, giá tị của \(\cos \angle BDC\) bằng:

Đáp án đúng là: C

Quảng cáo

Câu hỏi:541133
Phương pháp giải

Vận dụng định lý của tứ giác nội tiếp: Tứ giác nội tiếp đường tròn thì có tổng hai góc đối bằng \({180^0}\).

Vận dụng định lý tổng ba góc trong một tam giác.

Giải chi tiết

Tứ giác \(ABCD\) nội tiếp đường tròn \(\left( O \right)\)

\( \Rightarrow \angle BAD + \angle BCD = {180^0}\) (định lý của tứ giác nội tiếp)

\( \Rightarrow \angle BCD = {180^0} - \angle BAD = {180^0} - {105^0} = {75^0}\)

Xét tam giác \(BCD\) có: \(\angle DBC + \angle BCD + \angle BDC = {180^0}\) (định lý tổng ba góc trong một tam giác)

\(\begin{array}{l} \Rightarrow \angle BDC = {180^0} - \left( {\angle DBC + \angle BCD} \right)\\ \Rightarrow \angle BDC = {180^0} - \left( {{{45}^0} + {{75}^0}} \right)\\ \Rightarrow \angle BDC = {180^0} - {120^0}\\ \Rightarrow \angle BDC = {60^0}\\ \Rightarrow \cos \angle BDC = \dfrac{1}{2}\end{array}\)

Đáp án cần chọn là: C

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com