Cho tam giác nhọn \(ABC\) nội tiếp trong đường tròn \(\left( O \right)\). Vẽ các đường cao \(AH,BK\)
Cho tam giác nhọn \(ABC\) nội tiếp trong đường tròn \(\left( O \right)\). Vẽ các đường cao \(AH,BK\) và \(CP\) của tam giác \(ABC\) với \(H \in BC,K \in AC\) và \(P \in AB\).
a) Chứng minh tứ giác \(BPKC\) nội tiếp.
b) Chứng minh rằng: \(\angle BAH = \angle OAC\).
c) Đường thẳng \(PK\) cắt \(\left( O \right)\) tại hai điểm \(E\) và \(F\). Chứng minh \(OA\) là tia phân giác của \(\angle EAF\).
Quảng cáo
a) Vận dụng dấu hiệu nhận biết: Tứ giác có hai đỉnh kề cùng nhìn một cạnh dưới các góc bằng nhau là tứ giác nội tiếp.
b) Ta sẽ chứng mình: \(\angle BAH = {90^0} - \angle BAC\,\,\,\left( 1 \right)\) và \(\angle OAC = {90^0} - \angle BAC\,\,\,\left( 2 \right)\)
Từ (1) và (2), ta có điều phải chứng minh.
c) Kẻ tiếp tuyến \(Ax\) với \(\left( O \right)\)
Ta sẽ chứng minh: \(PK \bot OA\)
Gọi \(\left\{ M \right\} = OA \cap PK\)\( \Rightarrow M\) là trung điểm của \(EF\)
Chứng minh: \(\Delta AEF\) cân tại \(A\), suy ra điều phải chứng minh.
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com











