Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong mặt phẳng với hệ tọa độ \(Oxy\), cho hàm số \(y = \dfrac{1}{2}{x^2}\) có đồ thị \(\left( P

Câu hỏi số 541139:
Vận dụng

Trong mặt phẳng với hệ tọa độ \(Oxy\), cho hàm số \(y = \dfrac{1}{2}{x^2}\) có đồ thị \(\left( P \right)\) và đường thẳng \(d\) có phương trình \(y = x + \dfrac{1}{2}{m^2} + m + 1\) với \(m\) là tham số.

a) Vẽ đồ thị \(\left( P \right).\)

b) Tìm \(m\) để đường thẳng \(d\) cắt \(\left( P \right)\) tại \(2\) điểm phân biệt có hoành độ \({x_1},{x_2}\) sao cho \(x_1^2 + x_2^2 = 68\).

Quảng cáo

Câu hỏi:541139
Phương pháp giải

a) Vẽ đồ thị của hàm số \(y = a{x^2}\left( {a \ne 0} \right)\)

+ Nhận xét về hệ số \(a\) và sự biến thiên của hàm số

+ Lập bảng giá trị tương ứng của \(x\) và \(y\)

+ Xác định được các điểm mà đồ thị đi qua, vẽ đồ thị.

b) Xét phương trình hoành độ giao điểm giữa \(\left( P \right)\) và \(\left( d \right)\)  (*)

Phương trình (*) có hai nghiệm phân biệt \({x_1};{x_2}\) \( \Leftrightarrow \Delta  > 0\)

Áp dụng hệ thức Vi – ét, tính được \({x_1} + {x_2};{x_1}.{x_2}\) theo \(m\)

Thay vào phương trình, tìm tham số \(m\).

Giải chi tiết

a) Parabol \(y = \dfrac{1}{2}{x^2}\) có hệ số \(a = \dfrac{1}{2} > 0\) nên đồng biến với \(x > 0\) và nghịch biến \(x < 0\).

Đồ thị hàm số đi qua gốc tọa độ \(O\left( {0;0} \right)\) và nhận \(Oy\) làm trục đối xứng.

Bảng giá trị:

\( \Rightarrow \) Parabol \(y = \dfrac{1}{2}{x^2}\) là đường cong đi qua các điểm \(\left( { - 4;8} \right);\,\,\left( { - 2;2} \right);\,\,\left( {0;0} \right);\,\,\left( {2;2} \right);\,\,\left( {4;8} \right)\)

Đồ thị hàm số:

b) Xét phương trình hoành độ giao điểm của \(\left( P \right)\) và \(d\), ta có:

\(\dfrac{1}{2}{x^2} = x + \dfrac{1}{2}{m^2} + m + 1 \Leftrightarrow {x^2} - 2x - {m^2} - 2m - 2 = 0\,\,\,\left( * \right)\)

Để đường thẳng \(d\) cắt \(\left( P \right)\) tại hai điểm phân biệt có hoành độ \({x_1};{x_2}\) thì phương trình (*) có hai nghiệm phân biệt \({x_1};{x_2}\).

\(\begin{array}{l} \Leftrightarrow {{\Delta '}_{\left( * \right)}} > 0\\ \Leftrightarrow {\left( { - 1} \right)^2} - \left( { - {m^2} - 2m - 2} \right) > 0\\ \Leftrightarrow 1 + {m^2} + 2m + 2 > 0\\ \Leftrightarrow {m^2} + 2m + 3 > 0\\ \Leftrightarrow {\left( {m + 1} \right)^2} + 2 > 0\end{array}\)

Do \({\left( {m + 1} \right)^2} \ge 0,\forall m \Rightarrow {\left( {m + 1} \right)^2} + 2 \ge 2 > 0,\forall m\)

Do đó, \({\Delta '_{\left( * \right)}} > 0,\forall m\) hay phương trình (*) luôn có hai nghiệm phân biệt \({x_1};{x_2}\).

Vậy đường thẳng \(d\) cắt \(\left( P \right)\) tại hai điểm phân biệt có hoành độ \({x_1};{x_2}\).

Khi đó, áp dụng hệ thức Vi – ét, ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\\{x_1}{x_2} =  - {m^2} - 2m - 2\end{array} \right.\)

Theo bài ra, ta có:

\(\begin{array}{l}\,\,\,\,\,\,\,x_1^3 + x_2^3 = 68\\ \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 3{x_1}{x_2}\left( {{x_1} + {x_2}} \right) = 68\\ \Leftrightarrow {2^3} - 3.\left( { - {m^2} - 2m - 2} \right).2 = 68\\ \Leftrightarrow 8 + 6{m^2} + 12m + 12 = 68\\ \Leftrightarrow 6{m^2} + 12m - 48 = 0\\ \Leftrightarrow {m^2} + 2m - 8 = 0\\ \Leftrightarrow {m^2} + 4m - 2m - 8 = 0\\ \Leftrightarrow m\left( {m + 4} \right) - 2\left( {m + 4} \right) = 0\\ \Leftrightarrow \left( {m + 4} \right)\left( {m - 2} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}m + 4 = 0\\m - 2 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m =  - 4\\m = 2\end{array} \right.\end{array}\)

Vậy \(m \in \left\{ { - 4;2} \right\}\).

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com