Trong mặt phẳng với hệ tọa độ \(Oxy\), cho hàm số \(y = \dfrac{1}{2}{x^2}\) có đồ thị \(\left( P
Trong mặt phẳng với hệ tọa độ \(Oxy\), cho hàm số \(y = \dfrac{1}{2}{x^2}\) có đồ thị \(\left( P \right)\) và đường thẳng \(d\) có phương trình \(y = x + \dfrac{1}{2}{m^2} + m + 1\) với \(m\) là tham số.
a) Vẽ đồ thị \(\left( P \right).\)
b) Tìm \(m\) để đường thẳng \(d\) cắt \(\left( P \right)\) tại \(2\) điểm phân biệt có hoành độ \({x_1},{x_2}\) sao cho \(x_1^2 + x_2^2 = 68\).
Quảng cáo
a) Vẽ đồ thị của hàm số \(y = a{x^2}\left( {a \ne 0} \right)\)
+ Nhận xét về hệ số \(a\) và sự biến thiên của hàm số
+ Lập bảng giá trị tương ứng của \(x\) và \(y\)
+ Xác định được các điểm mà đồ thị đi qua, vẽ đồ thị.
b) Xét phương trình hoành độ giao điểm giữa \(\left( P \right)\) và \(\left( d \right)\) (*)
Phương trình (*) có hai nghiệm phân biệt \({x_1};{x_2}\) \( \Leftrightarrow \Delta > 0\)
Áp dụng hệ thức Vi – ét, tính được \({x_1} + {x_2};{x_1}.{x_2}\) theo \(m\)
Thay vào phương trình, tìm tham số \(m\).
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












