Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Hình giải tích phẳng

Câu hỏi số 54499:

Trong mặt phẳng với hệ tọa độ Oxy, cho hình thoi ABCD có BD = 2AC,  điểm H(2;−1), phương trình của đường thẳng BD là x−y= 0 . Gọi M là trung điểm của cạnh CD. Giả sử H là hình chiếu vuông góc của điểm A trên đường thẳng BM. Viết phương trình của đường thẳng AH.

Đáp án đúng là: D

Quảng cáo

Câu hỏi:54499
Giải chi tiết

Gọi I là tâm hình thoi và G là giao điểm của BM với AC thì G là trọng tâm của ∆BCD.

Trong tam giác vuông BIG, ta có:

sin \widehat{IBG}=\frac{IG}{BG}=\frac{IG}{\sqrt{BI^e_2}+IG^e_2}=\frac{IG}{\sqrt{(6IG)^{2}+IG^{2}}}=\frac{1}{\sqrt{37}} 

Suy ra cos (BD,AH) = sin \widehat{IBG} = \frac{1}{\sqrt{37}}

Gọi \vec{n} =(a;b) với a2 + b2 >0 là vecto pháp tuyến của đường thẳng AH

Ta có: cos (BD, AH) = \frac{1}{\sqrt{37}} <=> \frac{\left |a-b \right |}{\sqrt{a^e_2+b^{2}}.\sqrt{2}} = \frac{1}{\sqrt{37}} <=>  35a2 -74ab +35b2 = 0

Với a=  \frac{7b}{5}, chọn a=7, b=5, ta được AH: 7(x-2) + 5(y+1) =0 <= > 7x +5y -9 =0

Với a= \frac{5b}{7}, chọn a=5, b=7 ta được AH: 5(x-2) + 7(y+1) = 0 <= > 5x +7y -3 =0

 

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com