Hình giải tích phẳng
Trong mặt phẳng với hệ tọa độ Oxy, cho hình thang cân ABCD có AD và BC là hai đáy, AB=BC= 5. Biết rằng điểm E(2;1) thuộc cạnh AB, điểm F(−2;−5) thuộc cạnh AD và phương trình đường thẳng AC là x−3y−3 = 0 . Tìm tọa độ các đỉnh A, B.
Đáp án đúng là: A
Quảng cáo
Đáp án cần chọn là: A
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com



=(3;1)
=(3t+1;t-1)
=> H(12/5;-1/5)
)
= (
) , có vtpt
=(3,-4) nên có phương trình AD: 3x-4y-14=0. A là giao điểm của AD và AC nên suy ra A(6;1)
= (-4;0) => AE = 4. Vì AB=5 và E thuộc cạnh AB nên
=(-5;0)










