Cho số dương a thỏa mãn điều kiện hình phẳng giới hạn bởi các đường parabol \(y = a{x^2} -
Cho số dương a thỏa mãn điều kiện hình phẳng giới hạn bởi các đường parabol \(y = a{x^2} - 2\) và \(y = 4 - 2a{x^2}\) có diện tích bằng 16. Giá trị của a bằng
Đáp án đúng là: C
Quảng cáo
- Giả sử hai đồ thị cắt nhau tại 2 điểm phân biệt.
- Xét phương trình hoành độ giao điểm của hai đồ thị, giải tìm x.
- Tìm a để diện tích hình phẳng bằng 16.
- Sử dụng: Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x), y = g(x), đường thẳng x = a, x = b là \(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \).
Đáp án cần chọn là: C
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












