Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho đường tròn \((O)\) và dây cung \(MN\) (MN không phải là đường kinh). Lấy điểm \(K\) thuộc

Câu hỏi số 550264:
Vận dụng

Cho đường tròn \((O)\) và dây cung \(MN\) (MN không phải là đường kinh). Lấy điểm \(K\) thuộc đoạn thẳng \(MN\) sao cho \(KM > KN(K \ne N)\). Gọi \(I\) là điểm chính giữa của cung nhỏ \(MN\). Đường thẳng \(IK\) cắt đường tròn \((O)\) tại điểm \(E(E \ne I)\). Tiếp tuyến với đường tròn \((O)\) tại điểm \(E\) cắt đường thẳng \(MN\) tại điểm \(F\).

a) Chứng minh \(\widehat {NKE} = \widehat {IME}\);

b) Gọi \(P\) là điểm đối xứng với điểm \(K\) qua \(F\). Đường thẳng \(PE\) cắt đường tròn \((O)\) tại điểm \(Q(Q \ne E)\). Chứng minh \(IQ\) là đường kính của đường tròn \((O)\).

Quảng cáo

Câu hỏi:550264
Phương pháp giải

a) Ta sẽ chứng minh: \(\widehat {IEM} = \widehat {INM}\) và \(\widehat {IMN} = \widehat {INM}\), từ đó suy ra \(\widehat {NKE} = \widehat {IME}\)

b) Ta sẽ chứng minh: \(\widehat {IEQ} = 90^\circ \) nên là góc nội tiếp chắn nửa đường tròn do đó, \(IQ\) là đường kính của đường tròn \((O)\)

Giải chi tiết

a) Ta có: \(\widehat {NKE} = \widehat {IEM} + \widehat {EMN}\) (tính chất góc ngoài tam giác \(EMK\)).

          \(\widehat {IME} = \widehat {IMN} + \widehat {EMN}\)

Ta có \(\widehat {IEM} = \widehat {INM}\) ( 2 góc nội tiếp cùng chắn cung \(MI\)).

Lai có \(I\) là điểm chính giữa cung \(MN\) suy ra \(IM = IN\) (hai cung bằng nhau căng 2 dây bằng nhau).

\( \Rightarrow \Delta IMN\) là tam giác cân tại \(I\)

\( \Rightarrow \widehat {IMN} = \widehat {INM}\) (tính chất tam giác cân).

Suy ra \(\widehat {NKE} = \widehat {IME}\).

b) Ta có: \(\widehat {FKE} = \widehat {IEM} + \widehat {NME}\) (tính chất góc ngoài tam giác)

               \(\widehat {FEK} = \widehat {NEI} + \widehat {FEN}\)

Mà: \(\widehat {FEN} = \widehat {NME}\) (góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung \(NE\) ).

Trong \((O)\) có: \(\widehat {IEM} = \widehat {IEN}\) (hai góc nội tiếp chắn hai cung bằng nhau).

Suy ra \(\widehat {FEK} = \widehat {FKE}\).

Suy ra tam giác \(FEK\) cân tại \(F\) suy ra \(FE = FK\) (tính chất tam giác cân).

Mặt khác \(FK = FP\) (gt) nên \(FE = FK = FP = \dfrac{1}{2}PK\).

Tam giác \(EKP\) có \(FE = FK = FP = \dfrac{1}{2}PK\) suy ra tam giác \(EKP\) vuông tại \(E\).

Suy ra \(EK \bot EP\) hay \(EI \bot PQ\), suy ra \(\widehat {IEQ} = 90^\circ \) nên là góc nội tiếp chắn nửa đường tròn.

Vậy \(IQ\) là đường kính của đường tròn \((O)\) (đpcm).

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com