Từ điểm \(S\) nằm ngoài đường tròn tâm \(O\), vẽ hai tiếp tuyến \(SA,SB\) với đường tròn
Từ điểm \(S\) nằm ngoài đường tròn tâm \(O\), vẽ hai tiếp tuyến \(SA,SB\) với đường tròn (\(A,B\) là các tiếp điểm) và cát tuyến \(SCD\) không đi qua \(O(C\) nằm giữa \(S\) và \(D)\). Gọi \(K\) là giao điểm của \(SO\) với cung nhỏ \(AB\) và \(H\) là giao điểm của \(SO\) với đoạn thẳng \(AB\). Chứng minh:
a) Tứ giác \(SAOB\) nội tiếp;
b) \(S{A^2} = SC.SD\);
c) \(\angle SCK = \angle HCK\).
Quảng cáo
a) Vận dụng dấu hiệu nhận biết tứ giác nội tiếp: Tứ giác có tổng hai góc đối bằng \({180^0}\) là tứ giác nội tiếp.
b) Ta sẽ chứng minh: \(\Delta SAC \sim \Delta SDA\left( {g.g} \right) \Rightarrow S{A^2} = SC.SD\)
c) Chứng minh: \(\dfrac{{SC}}{{CH}} = \dfrac{{SO}}{{OA}}\); \(\dfrac{{SK}}{{KH}} = \dfrac{{SA}}{{AH}}\); \(\dfrac{{SO}}{{OA}} = \dfrac{{SA}}{{AH}}\)suy ra \(\dfrac{{SC}}{{CH}} = \dfrac{{SK}}{{KH}}\)
Do đó \(CK\) là tia phân giác của góc \(\angle SCH \Rightarrow \angle SCK = \angle HCK\).
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com











