Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tam giác \(ABC\) có ba góc nhọn nội tiếp đường tròn \(\left( O \right)\). Các đường cao

Câu hỏi số 551748:
Vận dụng

Cho tam giác \(ABC\) có ba góc nhọn nội tiếp đường tròn \(\left( O \right)\). Các đường cao \(AD,\,\,BE\) và \(CF\) của tam giác \(ABC\) cắt nhau tại \(H.\)

a) Chứng minh \(BCEF\) và \(CDHE\) là các tứ giác nội tiếp.

b) Chứng minh \(EB\) là tia phân giác của \(\angle  FED\) và tam giác \(BFE\) đồng dạng với tam giác \(DHE.\)

c) Giao điểm của \(AD\) với đường tròn \(\left( O \right)\) là \(I\) (\(I\) khác \(A\)), \(IE\) cắt đường tròn \(\left( O \right)\) tại \(K\) (\(K\) khác \(I\)). Gọi \(M\) là trung điểm của đoạn thẳng \(EF.\) Chứng minh rằng ba điểm \(B,\,\,M,\,\,K\) thẳng hàng.

Quảng cáo

Câu hỏi:551748
Phương pháp giải

a)Vận dụng dấu hiệu nhận biết:

+ Tứ giác có tổng hai góc đối bằng \({180^0}\) là tứ giác nội tiếp.

+ Tứ giác có hai đỉnh kề cùng nhìn một cạnh dưới các góc bằng nhau là tứ giác nội tiếp.

b) \(\left\{ \begin{array}{l}\angle BEF = \angle BED\\\angle EBF = \angle HDE\end{array} \right. \Rightarrow \Delta BFE \sim \Delta DHE\left( {g.g} \right)\)

c) Ta sẽ chứng minh: \(\angle ABM = \angle ABK\), mà \(BM,BK\)nằm trên cùng nửa mặt phẳng bờ chứa \(AB\). Do đó hai tia \(BM\) và \(BK\) là hai tia trùng nhau hay \(B,M\)và \(K\) là ba điểm thẳng hàng.

Giải chi tiết

a) + Có \(BE,\,\,CF\)là các đường cao của tam giác \(ABC\) nên  \(\angle BFC = {90^0};\angle BEC = {90^0}\)

Tứ giác \(BCEF\)có: \(\angle BFC = \angle BEC = {90^0}\)

Mà hai đỉnh \(E,F\) kề nhau

\( \Rightarrow BCEF\) là tứ giác nội tiếp.

+ Có \(AD,\,BE\) là các đường cao của tam giác \(ABC\) nên  \(\angle HDC = {90^0},\angle HEC = {90^0}\)

Tứ giác \(CDHE\)có: \(\angle HDC + \angle HEC = {180^0}\) mà \(\angle HDC\) và \(\angle HEC\) là hai  góc đối nhau nên \(CDHE\) là tứ giác nội tiếp.

b) Do \(BCEF\) là tứ giác nội tiếp nên \(\angle BEF = \angle BCF\)(góc nội tiếp cùng chắn \(cungBF\)) hay \(\angle BEF = \angle HCD\,\,\,\left( 1 \right)\)

Do \(CDHE\) là tứ giác nội tiếp nên \(\angle HED = \angle HCD\) (góc nội tiếp cùng chắn \(cungHD\)) \(\left( 2 \right)\)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra \(\angle BEF = \angle HED\) hay \(\angle BEF = \angle BED\).

Do đó \(EB\) là tia phân giác của \(\angle FED\).

Do \(BCEF\) là tứ giác nội tiếp nên \(\angle EBF = \angle ECF\)(góc nội tiếp cùng chắn \(cungEF\)) hay \(\angle EBF = \angle HCE\,\,\,\left( 3 \right)\).

Do \(CDHE\) là tứ giác nội tiếp nên \(\angle HDE = \angle HCE\) (góc nội tiếp cùng chắn \(cungHE\))\(\left( 4 \right)\).

Từ \(\left( 3 \right)\) và \(\left( 4 \right)\) suy ra \(\angle EBF = \angle HDE\)

Xét \(\Delta BFE\)và \(\Delta DHE\) có \(\angle BEF = \angle BED\) và \(\angle EBF = \angle HDE\) nên \(\Delta BFE \sim \Delta DHE\left( {g.g} \right)\)

c) Ta có \(\angle EBC = \angle CAD\) (cùng phụ với \(\angle ACB\)) hay \(\angle EBC = \angle CAI\)

Xét đường tròn \(\left( O \right)\) có \(\angle CAI = \angle CBI\) (góc nội tiếp cùng chắn \(cungCI\))

Nên \(\angle EBC = \angle CBI\) hay \(BC\) là phân giác của \(\angle HBI\), mà \(BC \bot HI\) suy ra \(\Delta HBI\) cân tại \(B\).

Do đó \(BC\) là đường trung trực của \(\Delta HBI\) suy ra \(D\) là trung điểm của \(HI.\)

Vì \(\Delta BFE \sim \Delta DHE \Rightarrow \dfrac{{BF}}{{DH}} = \dfrac{{FE}}{{HE}} \Rightarrow \dfrac{{BF}}{{2DH}} = \dfrac{{FE}}{{2HE}}\)

mà \(HI = 2DH\) (\(D\) là trung điểm của \(HI\)) và \(FM = \dfrac{{FE}}{2}\) (\(M\) là trung điểm của \(EF\))

Do đó \(\dfrac{{BF}}{{HI}} = \dfrac{{FM}}{{HE}} \cdot \)

Xét \(\Delta BFM\)và \(\Delta IHE\) có \(\dfrac{{BF}}{{HI}} = \dfrac{{FM}}{{HE}}\) và \(\angle BFM = \angle IHE\) nên \(\Delta BFM \sim \Delta IHE\left( {c.g.c} \right)\)

suy ra \(\angle FBM = \angle HIE\) (hai góc tương ứng) hay \(\angle ABM = \angle AIK\)\(\left( 5 \right).\)

Xét đường tròn \(\left( O \right)\) có \(\angle ABK = \angle AIK\) (góc nội tiếp cùng chắn \(cungAK\)) \(\left( 6 \right).\)

Từ \(\left( 5 \right)\) và \(\left( 6 \right)\) suy ra \(\angle ABM = \angle ABK\), mà \(BM,BK\)nằm trên cùng nửa mặt phẳng bờ chứa \(AB\). Do đó hai tia \(BM\) và \(BK\) là hai tia trùng nhau hay \(B,M\)và \(K\) là ba điểm thẳng hàng.

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com