Chứng minh rằng trong \(52\) số tự nhiên bất kỳ luôn có thể chọn ra hai số mà tổng hoặc
Chứng minh rằng trong \(52\) số tự nhiên bất kỳ luôn có thể chọn ra hai số mà tổng hoặc hiệu của chúng chia hết cho \(100\).
Quảng cáo
+ Nguyên lý Dirichlet cơ bản : Nếu nhốt \(n + 1\) chú thỏ được nhốt vào \(n\) chuồng thì luôn có ít nhất \(2\) con thỏ bị nhốt vào cùng một chuồng.
+ Nếu \(a\) chia hết cho \(m\) thì \({a^n}\) chia hết cho \(m\) với mọi \(n\,\) là số tự nhiên.
+ Các số hạng cùng chia hết cho \(2;3;5;9\) thì tổng hoặc hiệu của các số đó cùng chia hết cho \(2;3;5;9\).
+ Số thỏ: \(100\) con; Số lồng: \(51\) lồng.
>> Học trực tuyến lớp 6 chương trình mới trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 6 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com










