Cho tam giác \(ABC\) vuông tại \(A\). Gọi \(H\) là chân đường cao đỉnh \(A\) của tam giác \(ABC\),
Cho tam giác \(ABC\) vuông tại \(A\). Gọi \(H\) là chân đường cao đỉnh \(A\) của tam giác \(ABC\), \(BH = 2cm,\)\(CH = 3cm\), độ dài của đoạn \(AH\) bằng bao nhiêu?
Đáp án đúng là: D
Áp dụng hệ thức lượng trong tam giác vuông.
\(\Delta ABC\) vuông tại \(A,\) đường cao \(AH\), áp dụng hệ thức lượng trong tam giác vuông, ta có:
\(\begin{array}{l}\,\,\,\,\,\,\,\,A{H^2} = BH.CH\\ \Leftrightarrow A{H^2} = 2.3\\ \Leftrightarrow A{H^2} = 6\\ \Rightarrow AH = \sqrt 6 \left( {cm} \right)\end{array}\)
Vậy \(AH = \sqrt 6 cm\)
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com