Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

 Hàm số \(y = \left| {{x^2} - 3x + 2} \right|\) có giá trị lớn nhất trên đoạn \(\left[ { - 3;3}

Câu hỏi số 569711:
Vận dụng cao

 Hàm số \(y = \left| {{x^2} - 3x + 2} \right|\) có giá trị lớn nhất trên đoạn \(\left[ { - 3;3} \right]\) là

Đáp án đúng là: C

Quảng cáo

Câu hỏi:569711
Giải chi tiết

Ta có: \(y = \left| {{x^2} - 3x + 2} \right| = \sqrt {{{\left( {{x^2} - 3x + 2} \right)}^2}} \)

\(\begin{array}{l}y' = \dfrac{{\left( {{x^2} - 3x + 2} \right)\left( {2x - 3} \right)}}{{\left| {{x^2} - 3x + 2} \right|}},\,\,\forall x \ne \left\{ {1;2} \right\}\\y' = 0 \Leftrightarrow \left( {{x^2} - 3x + 2} \right)\left( {2x - 3} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}{x^2} - 3x + 2 = 0\\2x - 3 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = \dfrac{3}{2}\\x = 2\end{array} \right.\end{array}\)

Lại có: \(\left\{ \begin{array}{l}y\left( { - 3} \right) = 20\\y\left( 1 \right) = 0\\y\left( {\dfrac{3}{2}} \right) = \dfrac{1}{4}\\y\left( 2 \right) = 0\\y\left( 3 \right) = 2\end{array} \right.\)

Vậy giá trị lớn nhất của hàm số \(f\left( x \right)\) trên \(\left[ { - 3;3} \right]\) là \(20\).

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com