Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian \(Oxyz\), đường thẳng \(\Delta \): \(\left\{ \begin{array}{l}x = 2 + 2t\\y =  - 1 + 3t\\z

Câu hỏi số 575679:
Nhận biết

Trong không gian \(Oxyz\), đường thẳng \(\Delta \): \(\left\{ \begin{array}{l}x = 2 + 2t\\y =  - 1 + 3t\\z =  - 4 + 3t\end{array} \right.\) đi qua điểm nào dưới đây?

Đáp án đúng là: D

Quảng cáo

Câu hỏi:575679
Phương pháp giải

Thay tọa độ các điểm vào phương trình tham số của đường thẳng \(\Delta \), hệ phương trình nào giải được nghiệm t duy nhất thì điểm đó thuộc đường thẳng \(\Delta \).

Giải chi tiết

Xét \(P\left( {4\,;\,2\,;\,1} \right)\), ta có hệ: \(\left\{ \begin{array}{l}4 = 2 + 2t\\2 =  - 1 + 3t\\1 =  - 4 + 3t\end{array} \right.\). Hệ vô nghiệm. Do đó \(P \notin d\).

Xét \(Q\left( { - 2\,;\, - 7\,;\,10} \right)\), ta có hệ: \(\left\{ \begin{array}{l} - 2 = 2 + 2t\\ - 7 =  - 1 + 3t\\10 =  - 4 + 3t\end{array} \right.\) . Hệ vô nghiệm. Do đó \(Q \notin d\).

Xét \(N\left( {0\,;\, - 4\,;\,7} \right)\), ta có hệ: \(\left\{ \begin{array}{l}0 = 2 + 2t\\ - 4 =  - 1 + 3t\\7 =  - 4 + 3t\end{array} \right.\). Hệ vô nghiệm. Do đó \(N \notin d\).

Xét \(M\left( {0\,;\, - 4\,;\, - 7} \right)\), ta có hệ: \(\left\{ \begin{array}{l}0 = 2 + 2t\\ - 4 =  - 1 + 3t\\ - 7 =  - 4 + 3t\end{array} \right.\) \( \Leftrightarrow t =  - 1\). Do đó \(M \in d\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com