Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Hệ hai phương trình bậc nhất hai ẩn

Câu hỏi số 58214:

Một thửa ruộng hình chữ nhật, nếu tăng chiều dài thêm 2m, chiều rộng thêm 3m thì diện tích tăng thêm 100m2. Nếu giảm cả chiều dài và chiều rộng đi 2m thì diện tích giảm đi 68m2. Tính diện tích thửa ruộng đó.

Đáp án đúng là: B

Quảng cáo

Câu hỏi:58214
Giải chi tiết

Gọi chiều dài của thửa ruộng là x, chiều rộng là y. (x, y > 0, x tính bằng m)

Diện tích thửa ruộng là x.y

Nếu tăng chiều dài thêm 2m, chiều rộng thêm 3 m thì diện tích thửa ruộng lúc này là: (x + 2) (y + 3)

Nếu giảm cả chiều dài và chiều rộng 2m thì diện tích thửa ruộng còn lại là (x-2) (y-2).

Theo bài ra ta có hệ phương trình:

\left\{\begin{matrix} (x+2)(y+3)=xy+100\\ (x-2)(y-2)=xy-68 \end{matrix}\right.   

<=> \left\{\begin{matrix} xy+3x+2y+6=xy+100\\ xy-2x-2y+4=xy-68 \end{matrix}\right.

<=> \left\{\begin{matrix} 3x+2y=94\\ 2x+2y=72 \end{matrix}\right.    <=>  \left\{\begin{matrix} x=22\\ x+y=36 \end{matrix}\right.   <=>  \left\{\begin{matrix} x=22\\ y=14 \end{matrix}\right.

Vậy diện tích thửa ruộng là: S = 22 .14= 308 (m2).

Đáp án cần chọn là: B

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com