Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho tam giác \(MNP\) có \(MN = MP\). Gọi \(A\) là trung điểm của \(NP\). Nếu \(\angle NMP = {50^0}\) thì

Câu hỏi số 583602:
Vận dụng

Cho tam giác \(MNP\) có \(MN = MP\). Gọi \(A\) là trung điểm của \(NP\). Nếu \(\angle NMP = {50^0}\) thì số đo của \(\angle MPN\) là:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:583602
Phương pháp giải

Vận dụng định lí:

+ Nếu ba cạnh của tam giác bằng ba cạnh của tam giác kia thì hai tam giác đó bằng nhau.

+ Tổng ba góc trong một tam giác bằng \({180^0}\).

Giải chi tiết

* Vì \(A\) là trung điểm của \(NP\) nên \(AN = AP\) (tính chất trung điểm của đoạn thẳng)

* Xét \(\Delta AMN\) và \(\Delta AMP\) có:

\(MN = MP\) (giả thiết)

\(AN = AP\) (chứng minh trên)

\(AM\) là cạnh chung

Suy ra \(\Delta AMN = \Delta AMP\,\left( {c.c.c} \right)\)

Do đó, \(\angle MNA = \angle MPA\) (hai góc tương ứng) hay \(\angle MNP = \angle MPN\)

Xét \(\Delta MNP\) có: \(\angle MNP + NPM + \angle NMP = {180^0}\) (tổng ba góc trong một tam giác)

\(\begin{array}{l} \Rightarrow \angle MPN + \angle MPN + {50^0} = {180^0}\\ \Rightarrow 2\angle MPN = {180^0} - {50^0}\\ \Rightarrow 2\angle MPN = {130^0}\\ \Rightarrow \angle MPN = {130^0}:2\\ \Rightarrow \angle MPN = {65^0}\end{array}\)

Vậy \(\angle MPN = {65^0}\)

Đáp án cần chọn là: D

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 7 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com