Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hàm số bậc hai \(y = a{x^2} + bx + c\) có f(0) = 1, f(1) = 4, f(2) = 5.a. Hãy xác định các hệ số a,

Câu hỏi số 592204:
Vận dụng

Cho hàm số bậc hai \(y = a{x^2} + bx + c\) có f(0) = 1, f(1) = 4, f(2) = 5.

a. Hãy xác định các hệ số a, b, c.

b. Xác định tập giá trị, lập bảng biến thiên và vẽ đồ thị hàm số

Quảng cáo

Câu hỏi:592204
Phương pháp giải

Tính giá trị của hàm số tại các điểm cho trước, lập hệ phương trình tìm a, b, c.

Giải chi tiết

a. Từ f(0) = 1, f(1) = 4, f(2) = 5 ta có hệ phương trình

\(\begin{array}{l}\left\{ \begin{array}{l}a{.0^2} + b.0 + c = 1\\a{.1^2} + b.1 + c = 4\\a{.2^2} + b.2 + c = 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}c = 1\\a + b + 1 = 4\\4a + 2b + 1 = 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}c = 1\\a =  - 1\\b = 4\end{array} \right.\\\end{array}\)

Vậy hàm số có dạng \(y =  - {x^2} + 4x + 1\)

b. \(y =  - {x^2} + 4x + 1\)

Đỉnh S có tọa độ \(x = \frac{{ - 4}}{{2.\left( { - 1} \right)}} = 2\), \(y =  - {2^2} + 4.2 + 1 = 5\)

Vì hàm số có a = -1 < 0 nên ta có bảng biến thiên

Vậy hàm số đạt giá trị lớn nhất bằng 5 khi x = 1.

Tập giá trị của hàm số là \(( - \infty ,5]\)

Đồ thị:

Trong mặt phẳng Oxy đồ thị của \(y =  - {x^2} + 4x + 1\)là parabol (P) có:

Đỉnh S (2,5)

Trục đối xứng là x = 2

Bề lõm quay xuống

Cắt trục tung tại điểm (0,1)

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com