Gọi \({z_1}\) và \({z_2}\) là hai nghiệm phức của phương trình \({z^2} - 2z + 5 = 0\). Khi đó \({z_1}^2
Gọi \({z_1}\) và \({z_2}\) là hai nghiệm phức của phương trình \({z^2} - 2z + 5 = 0\). Khi đó \({z_1}^2 + {z_2}^2\) bằng
Đáp án đúng là: D
Quảng cáo
Sử dụng định lí Ta-lét: Phương trình bậc hai \(a{x^2} + bx + c = 0\) có 2 nghiệm phân biệt \({x_1},\,\,{x_2} \Rightarrow \left\{ \begin{array}{l}{x_1} + {x_2} = \dfrac{{ - b}}{a}\\{x_1}{x_2} = \dfrac{c}{a}\end{array} \right.\).
Sử dụng biến đối: \(z_1^2 + z_2^2 = {\left( {{z_1} + {z_2}} \right)^2} - 2{z_1}{z_2}.\)
Đáp án cần chọn là: D
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












