Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Trong không gian với hệ tọa độ Oxyz, phương trình đường thẳng vuông góc chung của hai đường

Câu hỏi số 607482:
Vận dụng

Trong không gian với hệ tọa độ Oxyz, phương trình đường thẳng vuông góc chung của hai đường thẳng \({d_1}:\,\,\left\{ \begin{array}{l}x = 1 + t\\y = 2 - t\\z = 2t\end{array} \right.\) và \({d_2}:\,\,\left\{ \begin{array}{l}x =  - 2 - 2t'\\y =  - 1\\z = t'\end{array} \right.\) đi qua điểm nào dưới đây?

Đáp án đúng là: A

Quảng cáo

Câu hỏi:607482
Giải chi tiết

+) \(M \in {d_1} \Rightarrow M\left( {1 + t;2 - t;2t} \right)\).

+) \(N \in {d_2} \Rightarrow N\left( { - 2 - 2t'; - 1;t'} \right)\)

+) \(\left\{ \begin{array}{l}\overrightarrow {{u_1}}  = \left( {1; - 1;2} \right)\\\overrightarrow {{u_2}}  = \left( { - 2;0;1} \right)\end{array} \right.\)

\( + )\,\,\overrightarrow {MN}  = \left( { - 2t' - t - 3;t - 3;t' - 2t} \right)\).

*) \(\Delta  \bot {d_1} \Rightarrow \overrightarrow {MN} .\overrightarrow {{u_1}}  = 0 \Leftrightarrow  - 2t' - t - 3 - t + 3 + 2t' - 4t = 0\)

\( \Leftrightarrow  - 6t = 0 \Leftrightarrow t = 0 \Rightarrow M\left( {1;2;0} \right)\)

*) \(\Delta  \bot {d_2} \Rightarrow \overrightarrow {MN} .\overrightarrow {{u_2}}  = 0 \Leftrightarrow 4t' + 2t + 6 + t' - 2t = 0\)

\( \Leftrightarrow 5t' + 6 = 0 \Leftrightarrow t' =  - \dfrac{6}{5} \Rightarrow N\left( {\dfrac{2}{5}; - 1; - \dfrac{6}{5}} \right)\)

\(\begin{array}{l} \Rightarrow \Delta \,\,\left\{ \begin{array}{l}qua\,\,M\left( {1;2;0} \right)\\\overrightarrow u  = \overrightarrow {MN}  = \left( { - \dfrac{3}{5}; - 3; - \dfrac{6}{5}} \right) =  - \dfrac{5}{3}\left( {1;5;2} \right)\end{array} \right.\\ \Rightarrow \Delta :\,\,\left\{ \begin{array}{l}x = 1 + t\\y = 2 + 5t\\z = 2t\end{array} \right.\end{array}\)

Thay M(2;7;2) vào phương trình đường thẳng \(\Delta  \Rightarrow \left\{ \begin{array}{l}2 = 1 + t\\7 = 2 + 5t\\2 = 2t\end{array} \right. \Leftrightarrow t = 1 \Rightarrow M \in \Delta .\)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com