Cho đường tròn (O) và điểm M nằm ngoài đường tròn. Qua M kẻ hai tiếp tuyến phân biệt MA, MB
Cho đường tròn (O) và điểm M nằm ngoài đường tròn. Qua M kẻ hai tiếp tuyến phân biệt MA, MB đến đường tròn ( A, B là các tiếp điểm).
a) Chứng minh tứ giác MAOB nội tiếp.
b) Đường thẳng MO cắt đường tròn (O) lần lượt tại hai điểm C, D phân biệt sao cho MC < MD . Chứng minh: MA.DA= MD.AC.
c) Đường thẳng BO cắt đường tròn (O) tại điểm thứ hai là E. Kẻ AI vuông góc với BE tại I. Đường thẳng ME cắt AI tại K, đường thẳng MO cắt AB tại H . Chứng minh hai đường thẳng HK và BE song song.
Quảng cáo
a) Dùng tổng hai góc đối diện bằng \({180^0}\)
b) Chứng minh \(\Delta MAC = \Delta MDA\left( {g.g} \right)\)
c) Chứng minh \(AF\) là phân giác của \(\angle MAK\) và \(\dfrac{{AK}}{{BM}} = \dfrac{{KI}}{{BM}} \Rightarrow AK = KI\).
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com











