Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho khối nón có thiết diện qua trục là tam giác \(SAB\) vuông tại \(S\). Biết tam giác \(SAB\) có

Câu hỏi số 614579:
Vận dụng

Cho khối nón có thiết diện qua trục là tam giác \(SAB\) vuông tại \(S\). Biết tam giác \(SAB\) có bán kính đường tròn nội tiếp bằng \(2\left( {\sqrt 2  - 1} \right)\). Tính thể tích khối nón đã cho

Đáp án đúng là: D

Quảng cáo

Câu hỏi:614579
Phương pháp giải

Sử dụng công thức diện tích tam giác: \(S = \dfrac{1}{2}a.{h_a} = pr\).

Giải chi tiết

NX: \(\Delta SAB\) vuông cân tại \(S\).

Giả sử \(SA = SB = x \Rightarrow AB = x\sqrt 2 \).

Ta có: \({S_{\Delta SAB}} = \dfrac{1}{2}SA.SB = \dfrac{1}{2}\left( {SA + SB + SC} \right).r\).

\( \Rightarrow {x^2} = \left( {2x + x\sqrt 2 } \right).2\left( {\sqrt 2  - 1} \right)\).

\( \Rightarrow x = 2\sqrt 2 \left( {\sqrt 2  + 1} \right)\left( {\sqrt 2  - 1} \right) = 2\sqrt 2 \).

\(\begin{array}{l} \Rightarrow OA = OB = SO = \dfrac{x}{{\sqrt 2 }} = 2\\ \Rightarrow V = \dfrac{1}{3}\pi .O{A^2}.OB = \dfrac{{8\pi }}{3}\end{array}\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com