Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm m để phương trình \( - {x^2} + 2\left( {m - 1} \right)x + m - 3 = 0\) có hai nghiệm phân biệt

Câu hỏi số 616767:
Thông hiểu

Tìm m để phương trình \( - {x^2} + 2\left( {m - 1} \right)x + m - 3 = 0\) có hai nghiệm phân biệt

Đáp án đúng là: B

Quảng cáo

Câu hỏi:616767
Phương pháp giải

Phương trình \(a{x^2} + bx + c = 0\,\,\left( {a \ne 0} \right)\) có hai nghiệm phân biệt khi \(\Delta  > 0.\)

Giải chi tiết

Phương trình \( - {x^2} + 2\left( {m - 1} \right)x + m - 3 = 0\) có \(\Delta ' = {\left( {m - 1} \right)^2} + \left( {m - 3} \right) = {m^2} - m - 2.\)

Để phương trình có hai nghiệm phân biệt thì \(\Delta  > 0.\)

\( \Leftrightarrow {m^2} - m - 2 > 0 \Leftrightarrow \left[ \begin{array}{l}m <  - 1\\m > 2\end{array} \right.\).

Vậy \(m \in \left( { - \infty ; - 1} \right) \cup \left( {2; + \infty } \right)\).

Đáp án cần chọn là: B

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com