Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Bất Đẳng thức, Giá trị lớn nhất và nhỏ nhất

Câu hỏi số 6212:

Cho các số thực a,b∈(0;1) Chứng minh rằng: \frac{ab(1-a)(1-b)}{(1-ab)^{2}} < \frac{1}{4}

Đáp án đúng là: C

Quảng cáo

Câu hỏi:6212
Giải chi tiết

Đặt \sqrt{ab}=u; a+b=v, khi đó bất đẳng thức đã cho được viết thành:

\frac{u^{2}(1-v+u^{2})}{(1-u^{2})^{2}} <\frac{1}{4}   (*)

Do v ≥2u nên \frac{u^{2}(1-v+u^{2})}{(1-u^{2})^{2}} < \frac{u^{2}(1-2u+u^{2})}{(1-u^{2})^{2}} = \frac{u^{2}}{(1-u^{2})^{2}}

Mặt khác, vì 0<u < \frac{1}{2}, suy ra \frac{u^{2}}{(1+u)^{2}}<\frac{1}{4}

Vậy bất đẳng thức (*) được chứng minh

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com