Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian với hệ toạ độ Oxyz, mặt phẳng đi qua tâm của mặt cầu \({\left( {x - 1}

Câu hỏi số 623880:
Thông hiểu

Trong không gian với hệ toạ độ Oxyz, mặt phẳng đi qua tâm của mặt cầu \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {z^2} = 12\) và song song với mặt phẳng (Oxz) có phương trình là:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:623880
Phương pháp giải

Mặt cầu \({\left( {x - {x_0}} \right)^2} + {\left( {y - {y_0}} \right)^2} + {\left( {z - {z_0}} \right)^2} = {R^2}\) có tâm I(a;b;c), bán kính R.

Hai mặt phẳng song song có cùng VTPT.

Phương trình mặt phẳng đi qua \(M\left( {{x_0};{y_0};{z_0}} \right)\) và có 1 VTPT \(\overrightarrow n \left( {A;B;C} \right)\) là \(A\left( {x - {x_0}} \right) + B\left( {y - {y_0}} \right) + C\left( {z - {z_0}} \right) = 0.\)

Giải chi tiết

Mặt cầu \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {z^2} = 12\) có tâm I(1;-2;0).

Gọi mặt phẳng cần tìm là (P).

Vì (P) // (Oxz) \( \Rightarrow \overrightarrow {{n_P}}  = \overrightarrow j  = \left( {0;1;0} \right)\).

Phương trình mặt phẳng (P): \(1\left( {y + 2} \right) = 0 \Leftrightarrow y + 2 = 0.\)

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com