Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tam giác \(ABC\). Các tia phân giác của các góc \(B\) và \(C\) cắt nhau tại \(I\). Qua \(I\)  kẻ

Câu hỏi số 638577:
Vận dụng

Cho tam giác \(ABC\). Các tia phân giác của các góc \(B\) và \(C\) cắt nhau tại \(I\). Qua \(I\)  kẻ đường thẳng song song với \(BC\), cắt các cạnh \(AB,AC\) lần lượt tại \(D\) và \(E\).

a) Chứng minh các tứ giác \(BDIC,BIEC,BDEC\) là hình thang

b) Chứng minh: \(DE = BD + CE\) .

Quảng cáo

Câu hỏi:638577
Giải chi tiết

Hướng dẫn giải chi tiết:

 

a) Xét tứ giác \(DECB\) có: \(DE//BC\)  (gt) nên tứ giác \(DECB\) là hình thang.

Tương tự :

Tứ giác \(DICB\) có \(DI//BC\) (gt)   nên tứ giác \(DICB\) là hình thang

Tứ giác \(IECB\) có \(IE//CB\) (gt) nên tứ giác \(IECB\) là hình thang.

b) Ta sẽ chứng minh: \(DE = BD + CE\) .

Thật vậy,

Vì \(DE//BC\) (gt)  nên suy ra  \(\widehat {DIB} = \widehat {IBC}\)  ( so le trong)

Mà  \(\widehat {DBI} = \widehat {IBC}\)  (gt) nên  \(\widehat {DIB} = \widehat {DBI}\)

Suy ra tam giác \(BDI\) cân đỉnh \(D\).

Do đó \(DI = DB(1)\)

Ta có: \(IE//CB\) nên suy ra  \(\widehat {EIC} = \widehat {BCI}\)  ( so le trong)

Mà  \(\widehat {BCI} = \widehat {ECI}\)  (gt) nên  \(\widehat {ECI} = \widehat {EIC}\)

Suy ra tam giác \(EIC\) cân đỉnh \(E\).

Do đó \(EI = EC(2)\).

Cộng (1) và (2) vế theo vế ta  được:

\(DI + EI = BD + CE \Rightarrow DE = BD + CE\)

Vậy hình thang \(BDEC\) có một cạnh đáy bằng tổng hai cạnh bên.

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 8 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com